Malle, Gunter; Späth, Britta Characters of odd degree. (English) Zbl 1397.20016 Ann. Math. (2) 184, No. 3, 869-908 (2016). Summary: We prove the McKay conjecture on characters of odd degree. A major step in the proof is the verification of the inductive McKay condition for groups of Lie type and primes \(\ell\) such that a Sylow \(\ell\)-subgroup or its maximal normal abelian subgroup is contained in a maximally split torus by means of a new equivariant version of Harish-Chandra induction. Specifics of characters of odd degree, namely, that most of them lie in the principal Harish-Chandra series, then allow us to deduce from it the McKay conjecture for the prime 2, hence for characters of odd degree. Cited in 2 ReviewsCited in 48 Documents MSC: 20C15 Ordinary representations and characters 20C33 Representations of finite groups of Lie type Keywords:characters of odd degree; equivariant Harish-Chandra theory; McKay conjecture PDF BibTeX XML Cite \textit{G. Malle} and \textit{B. Späth}, Ann. Math. (2) 184, No. 3, 869--908 (2016; Zbl 1397.20016) Full Text: DOI arXiv References: [1] C. Bonnafé, ”Quasi-isolated elements in reductive groups,” Comm. Algebra, vol. 33, iss. 7, pp. 2315-2337, 2005. · Zbl 1096.20037 [2] C. Bonnafé, Sur les Caractères des Groupes Réductifs finis à Centre Non Connexe: Applications aux Groupes Spéciaux Linéaires et Unitaires, Paris: Math. Soc. France, 2006, vol. 306. · Zbl 1157.20022 [3] M. Broué and G. Malle, ”Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis,” Math. Ann., vol. 292, iss. 2, pp. 241-262, 1992. · Zbl 0820.20057 [4] M. Broué, G. Malle, and J. Michel, ”Generic blocks of finite reductive groups,” in Représentations Unipotentes Génériques et Blocs des Groupes Réductifs Finis, Paris: Math. Soc. France, 1993, vol. 212, pp. 7-92. · Zbl 0843.20012 [5] M. Cabanes and M. Enguehard, Representation Theory of Finite Reductive Groups, Cambridge: Cambridge Univ. Press, 2004, vol. 1. · Zbl 1069.20032 [6] M. Cabanes and B. Späth, ”Equivariance and extendibility in finite reductive groups with connected center,” Math. Z., vol. 275, iss. 3-4, pp. 689-713, 2013. · Zbl 1328.20019 [7] M. Cabanes and B. Späth, ”Equivariant character correspondences and inductive McKay condition for type A,” J. reine angew. Math., 2016. · Zbl 1456.20009 [8] R. W. Carter, Finite Groups of Lie Type. Conjugacy classes and complex characters, New York: John Wiley & Sons, 1985. · Zbl 0567.20023 [9] F. Digne and J. Michel, Representations of Finite Groups of Lie Type, Cambridge: Cambridge Univ. Press, 1991, vol. 21. · Zbl 0815.20014 [10] R. Dipper and J. Du, ”Harish-Chandra vertices,” J. Reine Angew. Math., vol. 437, pp. 101-130, 1993. · Zbl 0768.20004 [11] M. Geck, ”A note on Harish-Chandra induction,” Manuscripta Math., vol. 80, iss. 4, pp. 393-401, 1993. · Zbl 0821.20027 [12] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, New York: The Clarendon Press, Oxford University Press, 2000. · Zbl 0996.20004 [13] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Providence, RI: Amer. Math. Soc., 1994, vol. 40. · Zbl 0816.20016 [14] R. B. Howlett and G. I. Lehrer, ”Induced cuspidal representations and generalised Hecke rings,” Invent. Math., vol. 58, iss. 1, pp. 37-64, 1980. · Zbl 0435.20023 [15] R. B. Howlett and G. I. Lehrer, ”Representations of generic algebras and finite groups of Lie type,” Trans. Amer. Math. Soc., vol. 280, iss. 2, pp. 753-779, 1983. · Zbl 0537.20018 [16] R. B. Howlett and G. I. Lehrer, ”On Harish-Chandra induction and restriction for modules of Levi subgroups,” J. Algebra, vol. 165, iss. 1, pp. 172-183, 1994. · Zbl 0802.20036 [17] B. Huppert, Character Theory of Finite Groups, Berlin: Walter de Gruyter & Co., 1998. · Zbl 0932.20007 [18] M. I. Isaacs, Character Theory of Finite Groups, New York: Academic Press [Harcourt Brace Jovanovich, Publishers], 1976, vol. 69. · Zbl 0337.20005 [19] M. I. Isaacs, G. Malle, and G. Navarro, ”A reduction theorem for the McKay conjecture,” Invent. Math., vol. 170, iss. 1, pp. 33-101, 2007. · Zbl 1138.20010 [20] G. Lusztig, Characters of Reductive Groups over a Finite Field, Princeton, NJ: Princeton Univ. Press, 1984, vol. 107. · Zbl 0556.20033 [21] G. Lusztig, ”On the representations of reductive groups with disconnected centre,” in Orbites Unipotentes et Représentations, I, Paris: Math. Soc. France, 1988, vol. 168, p. 10, 157-166. · Zbl 0703.20036 [22] G. Malle, ”Height 0 characters of finite groups of Lie type,” Represent. Theory, vol. 11, pp. 192-220, 2007. · Zbl 1139.20008 [23] G. Malle, ”The inductive McKay condition for simple groups not of Lie type,” Comm. Algebra, vol. 36, iss. 2, pp. 455-463, 2008. · Zbl 1153.20009 [24] G. Malle, ”Extensions of unipotent characters and the inductive McKay condition,” J. Algebra, vol. 320, iss. 7, pp. 2963-2980, 2008. · Zbl 1163.20003 [25] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge: Cambridge Univ. Press, 2011, vol. 133. · Zbl 1256.20045 [26] K. McGovern, ”Multiplicities of principal series representations of finite groups with split \((B,\,N)\)-pairs,” J. Algebra, vol. 77, iss. 2, pp. 419-442, 1982. · Zbl 0492.20023 [27] J. McKay, ”Irreducible representations of odd degree,” J. Algebra, vol. 20, pp. 416-418, 1972. · Zbl 0235.20009 [28] G. Navarro and P. H. Tiep, ”Irreducible representations of odd degree,” Math. Ann., vol. 365, pp. 1155-1185, 2016. · Zbl 1400.20006 [29] B. Späth, Die McKay-Vermutung für quasi-einfache Gruppen vom Lie-Typ. [30] B. Späth, ”The McKay conjecture for exceptional groups and odd primes,” Math. Z., vol. 261, iss. 3, pp. 571-595, 2009. · Zbl 1178.20006 [31] B. Späth, ”A reduction theorem for the Alperin-McKay conjecture,” J. Reine Angew. Math., vol. 680, pp. 153-189, 2013. · Zbl 1283.20006 [32] B. Späth, ”Sylow \(d\)-tori of classical groups and the McKay conjecture. I,” J. Algebra, vol. 323, iss. 9, pp. 2469-2493, 2010. · Zbl 1260.20015 [33] B. Späth, ”Inductive McKay condition in defining characteristic,” Bull. Lond. Math. Soc., vol. 44, iss. 3, pp. 426-438, 2012. · Zbl 1251.20020 [34] T. A. Springer, ”Regular elements of finite reflection groups,” Invent. Math., vol. 25, pp. 159-198, 1974. · Zbl 0287.20043 [35] J. Tits, ”Normalisateurs de tores. I. Groupes de Coxeter étendus,” J. Algebra, vol. 4, pp. 96-116, 1966. · Zbl 0145.24703 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.