Duke, W.; Imamoḡlu, Ö.; Tóth, Á. Geometric invariants for real quadratic fields. (English) Zbl 1372.11056 Ann. Math. (2) 184, No. 3, 949-990 (2016). Let \(\mathbb K\) be a real quadratic field. Then \(\mathbb K={\mathbb Q}(\sqrt D)\) where \(D>1\) is the discriminant of \(\mathbb K\). Let \(\text{Cl}^+(\mathbb K)\) be its ideal class group in the narrow sense. Then \(\text{Gen}(\mathbb K)= \text{Cl}^+(\mathbb K)/(\text{Cl}^+(\mathbb K))^2\) is the genus group of \(\mathbb K\). The modular group \(\Gamma =\text{PSL}(2, {\mathbb Z})\) acts on the upper half plane \(\mathcal H\) with standard fundamental domain \[ \begin{aligned}{\mathcal F}=\{z\in {\mathcal H}:-1/2\leq \text{Re} (x)\leq 0 \;\text{and}\;|z|\geq 1\}\;\\ \cup \;\{z \in {\mathcal H}:0< \text{Re} (x) <1/2 \;\text{and}\;|z|> 1\}.\end{aligned} \] To an element \(A\in \text{Cl}^+(\mathbb K)\) one can associate a modular closed geodesic \({\mathcal C}_A\) on \(\Gamma \backslash \mathcal H\). In the paper under review the authors associate to \(A\) a finite area hyperbolic surface \(\mathcal F_A\) whose boundary component is a simple closed geodesic whose image in \(\Gamma \backslash \mathcal H\) is \({\mathcal C}_A\). The main result of the paper is the following theorem.Theorem 2. Suppose that for each positive fundamental discriminant \(D>1\), we choose a genus \(G_D\in \text{Gen}({\mathbb K})\). Let \(\Omega\) be an open disc contained in the fundamental domain \({\mathcal F}\) for \(\Gamma =\text{PSL}(2, {\mathbb Z})\), and let \(\Gamma\Omega\) be its orbit under the action of \(\Gamma\). We have \[ {\pi\over 3}\sum_{A\in G_D}\text{area}({\mathcal F}_A\cap \Gamma\Omega)\sim \text{area}(\Omega)\sum_{A\in G_D}\text{area}({\mathcal F}_A), \] as \(D\rightarrow \infty\) through fundamental discriminants.This result is closely related to the uniform distribution result for closed geodesics obtained in [W. Duke, Invent. Math. 92, No. 1, 73–90 (1988; Zbl 0628.10029)]. As with the proof of the latter result the authors employ the analytic method to obtain their proof of Theorem 2. This requires them to establish extensions of formulas of Hecke and Katok-Sarnak to which much of the paper is dedicated. Reviewer: James E. Carter (Charleston) Cited in 13 Documents MSC: 11F11 Holomorphic modular forms of integral weight 11R29 Class numbers, class groups, discriminants 11F37 Forms of half-integer weight; nonholomorphic modular forms Keywords:closed geodesics; equidistribution; modular forms; real quadratic fields; subconvexity Citations:Zbl 0628.10029 PDF BibTeX XML Cite \textit{W. Duke} et al., Ann. Math. (2) 184, No. 3, 949--990 (2016; Zbl 1372.11056) Full Text: DOI Link References: [1] E. M. Baruch and Z. Mao, ”A generalized Kohnen-Zagier formula for Maass forms,” J. Lond. Math. Soc., vol. 82, iss. 1, pp. 1-16, 2010. · Zbl 1217.11047 [2] A. F. Beardon, The Geometry of Discrete Groups, New York: Springer-Verlag, 1983, vol. 91. · Zbl 0528.30001 [3] A. Biró, ”Cycle integrals of Maass forms of weight 0 and Fourier coefficients of Maass forms of weight \(1/2\),” Acta Arith., vol. 94, iss. 2, pp. 103-152, 2000. · Zbl 0969.11017 [4] V. Blomer and G. Harcos, ”Hybrid bounds for twisted \(L\)-functions,” J. Reine Angew. Math., vol. 621, pp. 53-79, 2008. · Zbl 1193.11044 [5] A. R. Booker, A. Strömbergsson, and A. Venkatesh, ”Effective computation of Maass cusp forms,” Int. Math. Res. Not., vol. 2006, p. I, 2006. · Zbl 1154.11018 [6] D. A. Burgess, ”On character sums and \(L\)-series,” Proc. London Math. Soc., vol. 12, pp. 193-206, 1962. · Zbl 0106.04004 [7] F. L. Chiera, ”On Petersson products of not necessarily cuspidal modular forms,” J. Number Theory, vol. 122, iss. 1, pp. 13-24, 2007. · Zbl 1118.11021 [8] H. Cohen, ”Sums involving the values at negative integers of \(L\) functions of quadratic characters,” in Séminaire de Théorie des Nombres, 1974-1975, Centre Nat. Recherche Sci., Talence, 1975, p. 21. [9] H. Cohen and H. W. relax Lenstra Jr., ”Heuristics on class groups,” in Number Theory, New York: Springer-Verlag, 1984, vol. 1052, pp. 26-36. [10] J. B. Conrey and H. Iwaniec, ”The cubic moment of central values of automorphic \(L\)-functions,” Ann. of Math., vol. 151, iss. 3, pp. 1175-1216, 2000. · Zbl 0973.11056 [11] H. Davenport, Multiplicative Number Theory, Third ed., New York: Springer-Verlag, 2000, vol. 74. · Zbl 1002.11001 [12] W. Duke, ”Hyperbolic distribution problems and half-integral weight Maass forms,” Invent. Math., vol. 92, iss. 1, pp. 73-90, 1988. · Zbl 0628.10029 [13] W. Duke, J. Friedlander, and H. Iwaniec, ”Bounds for automorphic \(L\)-functions,” Invent. Math., vol. 112, iss. 1, pp. 1-8, 1993. · Zbl 0765.11038 [14] W. Duke, J. B. Friedlander, and H. Iwaniec, ”Weyl sums for quadratic roots,” Int. Math. Res. Not., vol. 2012, iss. 11, pp. 2493-2549, 2012. · Zbl 1300.11086 [15] W. Duke and Ö. Imamo=glu, ”A converse theorem and the Saito-Kurokawa lift,” Internat. Math. Res. Notices, iss. 7, pp. 347-355, 1996. · Zbl 0849.11039 [16] W. Duke, Ö. Imamo=glu, and Á. Tóth, ”Cycle integrals of the \(j\)-function and mock modular forms,” Ann. of Math., vol. 173, iss. 2, pp. 947-981, 2011. · Zbl 1270.11044 [17] M. Eichler, ”Grenzkreisgruppen und kettenbruchartige Algorithmen,” Acta Arith., vol. 11, pp. 169-180, 1965. · Zbl 0148.32503 [18] M. Einsiedler, E. Lindenstrauss, P. Michel, and A. Venkatesh, ”The distribution of closed geodesics on the modular surface, and Duke’s theorem,” Enseign. Math., vol. 58, iss. 3-4, pp. 249-313, 2012. · Zbl 1312.37032 [19] B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton, NJ: Princeton Univ. Press, 2012, vol. 49. · Zbl 1245.57002 [20] J. D. Fay, ”Fourier coefficients of the resolvent for a Fuchsian group,” J. Reine Angew. Math., vol. 293/294, pp. 143-203, 1977. · Zbl 0352.30012 [21] D. Goldfeld and J. Hoffstein, ”Eisenstein series of \({1\over 2}\)-integral weight and the mean value of real Dirichlet \(L\)-series,” Invent. Math., vol. 80, iss. 2, pp. 185-208, 1985. · Zbl 0564.10043 [22] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Eighth ed., Amsterdam: Elsevier/Academic Press, 2015. · Zbl 0918.65002 [23] D. Goldfeld and P. Sarnak, ”Sums of Kloosterman sums,” Invent. Math., vol. 71, iss. 2, pp. 243-250, 1983. · Zbl 0507.10029 [24] W. F. Hammond, ”The modular groups of Hilbert and Siegel,” Amer. J. Math., vol. 88, pp. 497-516, 1966. · Zbl 0144.34103 [25] W. F. Hammond and F. Hirzebruch, ”\(L\)-series, modular imbeddings, and signatures,” Math. Ann., vol. 204, pp. 263-270, 1973. · Zbl 0245.10017 [26] E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Göttingen: Vandenhoeck & Ruprecht, 1983. · Zbl 0507.10015 [27] D. A. Hejhal, The Selberg Trace Formula for \({ PSL}(2, {\mathbf R})\). Vol. 2, New York: Springer-Verlag, 1983, vol. 1001. · Zbl 0543.10020 [28] F. E. P. Hirzebruch, ”Hilbert modular surfaces,” Enseignement Math., vol. 19, pp. 183-281, 1973. · Zbl 0285.14007 [29] H. Iwaniec, ”Fourier coefficients of modular forms of half-integral weight,” Invent. Math., vol. 87, iss. 2, pp. 385-401, 1987. · Zbl 0606.10017 [30] H. Iwaniec, Spectral Methods of Automorphic Forms, Second ed., Providence, RI: Amer. Math. Soc., 2002, vol. 53. · Zbl 1006.11024 [31] H. Iwaniec and E. Kowalski, Analytic Number Theory, Providence, RI: Amer. Math. Soc., 2004, vol. 53. · Zbl 1059.11001 [32] P. Jenkins, ”Kloosterman sums and traces of singular moduli,” J. Number Theory, vol. 117, iss. 2, pp. 301-314, 2006. · Zbl 1177.11038 [33] S. Katok, ”Coding of closed geodesics after Gauss and Morse,” Geom. Dedicata, vol. 63, iss. 2, pp. 123-145, 1996. · Zbl 0884.20030 [34] S. Katok and P. Sarnak, ”Heegner points, cycles and Maass forms,” Israel J. Math., vol. 84, iss. 1-2, pp. 193-227, 1993. · Zbl 0787.11016 [35] W. Kohnen, ”Fourier coefficients of modular forms of half-integral weight,” Math. Ann., vol. 271, iss. 2, pp. 237-268, 1985. · Zbl 0542.10018 [36] W. Kohnen and D. Zagier, ”Values of \(L\)-series of modular forms at the center of the critical strip,” Invent. Math., vol. 64, iss. 2, pp. 175-198, 1981. · Zbl 0468.10015 [37] H. Maass, ”Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik,” Math. Ann., vol. 138, pp. 287-315, 1959. · Zbl 0089.06102 [38] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, New York: Springer-Verlag, 1966, vol. 52. · Zbl 0143.08502 [39] B. Maskit, ”On Poincaré’s theorem for fundamental polygons,” Advances in Math., vol. 7, pp. 219-230, 1971. · Zbl 0223.30008 [40] H. Neunhöffer, ”Über die analytische Fortsetzung von Poincaréreihen,” S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., pp. 33-90, 1973. [41] D. Niebur, ”A class of nonanalytic automorphic functions,” Nagoya Math. J., vol. 52, pp. 133-145, 1973. · Zbl 0288.10010 [42] H. Poincaré, ”Théorie des groupes fuchsiens,” Acta Math., vol. 1, iss. 1, pp. 1-76, 1882. · JFM 14.0338.01 [43] W. Roelcke, ”Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, II. (German),” Math. Ann., vol. 167, pp. 292-337, 1966. · Zbl 0152.07705 [44] P. Sarnak, ”Class numbers of indefinite binary quadratic forms,” J. Number Theory, vol. 15, iss. 2, pp. 229-247, 1982. · Zbl 0499.10021 [45] P. Sarnak, Some Applications of Modular Forms, Cambridge: Cambridge Univ. Press, 1990, vol. 99. · Zbl 0721.11015 [46] P. Sarnak, ”Reciprocal geodesics,” in Analytic Number Theory, Providence, RI: Amer. Math. Soc., 2007, vol. 7, pp. 217-237. · Zbl 1198.11039 [47] A. Selberg, ”On the estimation of Fourier coefficients of modular forms,” in Proc. Sympos. Pure Math., Vol. VIII, Providence, R.I.: Amer. Math. Soc., 1965, pp. 1-15. · Zbl 0142.33903 [48] G. Shimura, ”On modular forms of half integral weight,” Ann. of Math., vol. 97, pp. 440-481, 1973. · Zbl 0266.10022 [49] T. Shintani, ”On construction of holomorphic cusp forms of half integral weight,” Nagoya Math. J., vol. 58, pp. 83-126, 1975. · Zbl 0316.10016 [50] C. L. Siegel, Advanced Analytic Number Theory, Second ed., Bombay: Tata Inst. Fund. Res., 1980. · Zbl 0478.10001 [51] C. L. Siegel, ”Die Funktionalgleichungen einiger Dirichletscher Reihen,” Math. Z., vol. 63, pp. 363-373, 1956. · Zbl 0070.07702 [52] F. Strömberg, ”Computation of Maass waveforms with nontrivial multiplier systems,” Math. Comp., vol. 77, iss. 264, pp. 2375-2416, 2008. · Zbl 1260.11039 [53] &. Tóth, ”On the evaluation of Salié sums,” Proc. Amer. Math. Soc., vol. 133, iss. 3, pp. 643-645, 2005. · Zbl 1092.11036 [54] J. -L. Waldspurger, ”Sur les coefficients de Fourier des formes modulaires de poids demi-entier,” J. Math. Pures Appl., vol. 60, iss. 4, pp. 375-484, 1981. · Zbl 0431.10015 [55] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge: Cambridge Univ. Press, 1996. · Zbl 0951.30002 [56] M. Young, Weyl-type hybrid subconvexity bounds for twisted \(L\)-functions and Heegner points on shrinking sets. · Zbl 1430.11067 [57] D. Zagier, ”A Kronecker limit formula for real quadratic fields,” Math. Ann., vol. 213, pp. 153-184, 1975. · Zbl 0283.12004 [58] D. B. Zagier, Zetafunktionen und Quadratische Körper, New York: Springer-Verlag, 1981. · Zbl 0459.10001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.