×

zbMATH — the first resource for mathematics

A hyperbolic model for viscous Newtonian flows. (English) Zbl 1348.76046
Summary: We discuss a pure hyperbolic alternative to the Navier-Stokes equations, which are of parabolic type. As a result of the substitution of the concept of the viscosity coefficient by a microphysics-based temporal characteristic, particle settled life (PSL) time, it becomes possible to formulate a model for viscous fluids in a form of first-order hyperbolic partial differential equations. Moreover, the concept of PSL time allows the use of the same model for flows of viscous fluids (Newtonian or non-Newtonian) as well as irreversible deformation of solids. In the theory presented, a continuum is interpreted as a system of material particles connected by bonds; the internal resistance to flow is interpreted as elastic stretching of the particle bonds; and a flow is a result of bond destructions and rearrangements of particles. Finally, we examine the model for simple shear flows, arbitrary incompressible and compressible flows of Newtonian fluids and demonstrate that Newton’s viscous law can be obtained in the framework of the developed hyperbolic theory as a steady-state limit. A basic relation between the viscosity coefficient, PSL time, and the shear sound velocity is also obtained.

MSC:
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
LSODE; Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Landau L.D., Lifshitz E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6. Pergamon Press, New York (1966)
[2] Godunov, S.K.: Elements of mechanics of continuous media. Nauka; (1978). (in Russian)
[3] Godunov S.K., Romenskii E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer/Plenum, Boston (2003) · Zbl 1031.74004
[4] Frenkel J.: Kinetic Theory of Liquids. Dover, New York (1955) · Zbl 0063.01447
[5] Leonov, A.I., Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta, 15, 85-98, (1976) · Zbl 0351.73001
[6] Leonov, A.I., On a class of constitutive equations for viscoelastic liquids, J. Non-Newton. Fluid Mech., 25, 1-59, (1987) · Zbl 0679.76006
[7] Tsinober A.: An Informal Conceptual Introduction to Turbulence. Springer, Berlin (2009) · Zbl 1177.76001
[8] Yakhot, V., Chen, H.A., Staroselsky, I., Qian, Y., Shock, R., Kandasamy, S., et al.: A New Approach to Modelling Strongly Non-Equilibrium, Time-Dependent Turbulent Flow. Exa internal publication. Available from: http://www.exa.com/pdf/03_Yakhot_New_Approach.pdf (2001)
[9] Gomez, H.; Colominas, I.; Navarrina, F.; Paris, J.; Casteleiro, M., A hyperbolic theory for advection-diffusion problems: mathematical foundations and numerical modeling, Arch. Comput. Methods Eng., 17, 191-211, (2010) · Zbl 1269.76116
[10] Jou D., Casas-Vazquez J., Lebon G.: Extended Irreversible Thermodynamics. 4th edn. Springer, Berlin (2010) · Zbl 1185.74002
[11] Muller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, Berlin (1998)
[12] Jordan, P.M.; Meyer, M.R.; Puri, A., Causal implications of viscous damping in compressible fluid flows, Phys. Rev. E, 62, 7918, (2000) · Zbl 0973.81020
[13] Romatschke, P., New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys. E, 19, 1-53, (2010)
[14] Huovinen, P.; Molnar, D., Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions, Phys. Rev. C, 79, 014906, (2009)
[15] Godunov, S.K.: Equations of Mathematical Physics. Nauka, Moscow (1979) (in Russian) · Zbl 0447.22011
[16] Dubois, F.; Floch, P.L., Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differ. Equ., 71, 93-122, (1988) · Zbl 0649.35057
[17] Dafermos C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2005) · Zbl 1078.35001
[18] Israel, W.; Stewart, J.M., Transient relativistic thermodynamics and kinetic theory, Ann. Phys., 118, 341-372, (1979)
[19] Bampi, F.; Morro, A., Viscous fluids with hidden variables and hyperbolic systems, Wave Motion, 2, 153-157, (1980) · Zbl 0481.76072
[20] Geroch, R., Relativistic theories of dissipative fluids, J. Math. Phys., 36, 4226-4241, (1995) · Zbl 0842.76099
[21] Gomez, H.; Colominas, I.; Navarrina, F.; Casteleiro, M., A finite element formulation for a convection-diffusion equation based on cattaneo’s law, Comput. Method Appl. Mech. Eng., 196, 1757-1766, (2007) · Zbl 1173.76339
[22] Nishikawa, H., A first-order system approach for diffusion equation. II: unification of advection and diffusion, J. Comput. Phys., 229, 3989-4016, (2010) · Zbl 1192.65116
[23] Montecinos, G.I.; Muller, L.O.; Toro, E.F., Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes, J. Comput. Phys., 266, 101-123, (2014) · Zbl 1323.92065
[24] Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49-88 (1867) · Zbl 0842.76099
[25] Cattaneo, C.: Sulla conduzione del calore. Atti. Semin. Mat. Fis. Univ. Modena. 3 (1948) · Zbl 0035.26203
[26] Joseph D.D.: Fluid Dynamics of Viscoelastic Liquids. Vol. 84 of Applied Mathematical Sciences. Springer, Berlin (1990) · Zbl 0698.76002
[27] Balmforth, N.J.; Frigaard, I.A.; Ovarlez, G., Yielding to stress: recent developments in viscoplastic fluid mechanics, Ann. Rev. Fluid Mech., 46, 121-146, (2014) · Zbl 1297.76008
[28] Wilkins M.L.: Calculation of Elastic-Plastic Flow. California Univ. Livermore Radiation LAB, Livermore (1963)
[29] Romenskii, E.I., Hypoelastic form of equations in nonlinear elasticity theory, J. Appl. Mech. Techn. Phys., 15, 255-259, (1974)
[30] Trangenstein, J.A.; Colella, P., A higher-order Godunov method for modelling finite deformation in elastic-plastic solids, Commun. Pure Appl. Math., XLIV, 41-100, (1991) · Zbl 0714.73027
[31] Gavrilyuk, S.L.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 2941-2969, (2008) · Zbl 1155.74020
[32] Peshkov, I., Grmela, M., Romenski, E.: Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid-fluid transitions. Continuum Mech. Thermodyn. (2014). doi:10.1007/s00161-014-0386-1 · Zbl 1341.80023
[33] Besseling, J.F.: A thermodynamic approach to rheology. In: Parkus, H., Sedov, L.I. (eds.) Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. IUTAM Symposia, pp. 16-53. Springer, Vienna (1968) · Zbl 0813.76005
[34] Grmela, M., Ottinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620 (1997) · Zbl 0032.22201
[35] Ottinger, H.C.; Grmela, M., Dynamics and thermodynamics of complex fluids. II. illustrations of a general formalism, Phys. Rev. E, 56, 6633, (1997)
[36] Grmela, M., Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering, Adv. Chem. Eng., 39, 75-129, (2010)
[37] Godunov, S.K.; Romenskii, E.I., Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates, J. Appl. Mech. Tech. Phys., 13, 868-884, (1972)
[38] Eckart, C., The thermodynamics of irreversible processes. IV. the theory of elasticity and anelasticity, Phys. Rev., 73, 373-382, (1948) · Zbl 0032.22201
[39] Rubin, M.B., An elastic-viscoplastic model exhibiting continuity of solid and fluid states, Int. J. Eng. Sci., 25, 1175-1191, (1987) · Zbl 0616.73006
[40] Rubin, M.B.; Yarin, A.L., On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids, J. Non-Newton. Fluid Mech., 50, 79-88, (1993) · Zbl 0813.76005
[41] Godunov, S.K., An interesting class of quasilinear systems, Dokl. Akad. Nauk. SSSR, 139, 521-523, (1961) · Zbl 0125.06002
[42] Romensky, E.I., Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics, Math. Comput. Model., 28, 115-130, (1998) · Zbl 1076.74501
[43] Romensky, E.I.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Toro, E.F. (ed.) Godunov Methods, pp. 745-761. Springer, Berlin (2001) · Zbl 1017.74004
[44] Bouchbinder, E.; Langer, J.S.; Procaccia, I., Athermal shear-transformation-zone theory of amorphous plastic deformation. I. basic principles, Phys. Rev. E, 75, 036107, (2007)
[45] Godunov, S.K., Romenskii, E.I.: Elements of mechanics of continuous media. Nauchnaya Kniga (1998) (in Russian) · Zbl 1192.65116
[46] Miller, G.H.; Colella, P., A high-order Eulerian Godunov method for elastic-plastic flow in solids, J. Comput. Phys., 167, 131-176, (2001) · Zbl 0997.74078
[47] Barton, P.T.; Drikakis, D.; Romenski, E.I., An Eulerian finite-volume scheme for large elastoplastic deformations in solids, Int. J. Numer. Method. Eng., 81, 453-484, (2010) · Zbl 1183.74331
[48] Godunov, S.K.; Peshkov, I.M., Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium, Comput. Math. Math. Phys., 50, 1409-1426, (2010) · Zbl 1224.74017
[49] Favrie, N.; Gavrilyuk, S.L., Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction, J. Comput. Phys., 231, 2695-2723, (2012) · Zbl 1430.74036
[50] Barton, P.; Romenski, E., On computational modelling of strain-hardening material dynamics, Commun. Comput. Phys., 11, 1525-1546, (2012) · Zbl 1272.17010
[51] Barton, P.T.; Deiterding, R.; Meiron, D.; Pullin, D., Eulerian adaptive finite-difference method for high-velocity impact and penetration problems, J. Comput. Phys., 240, 76-99, (2013)
[52] Kulikovskii A.G., Pogorelov N.V., Semenov A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. CRC Press, Boca Raton (2000) · Zbl 0926.35011
[53] Afif, A.E.; Grmela, M., Non-Fickian mass transport in polymers, J. Rheol., 46, 591-628, (2002)
[54] Godunov, S.K.; Demchuk, A.F.; Kozin, N.S.; Mali, V.I., Interpolation formulas for Maxwell viscosity of certain metals as a function of shear-strain intensity and temperature, J. Appl. Mech. Tech. Phys., 15, 526-529, (1974)
[55] Godunov, S.K.; Kozin, N.S., Shock structure in a viscoelastic medium with a nonlinear dependence of the Maxwellian viscosity on the parameters of the material, J. Appl. Mech. Tech. Phys., 15, 666-671, (1974)
[56] Godunov, S.K.; Denisenko, V.V.; Kozin, N.S.; Kuz’mina, N.K., Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for Maxwellian viscosity, J. Appl. Mech. Tech. Phys., 16, 811-814, (1975)
[57] Ndanou, S.; Favrie, N.; Gavrilyuk, S., Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form, J. Elast., 115, 1-25, (2014) · Zbl 1302.35254
[58] Joseph, D.D.; Renardy, M.; Saut, J.C., Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Ration. Mech. Anal., 87, 213-251, (1985) · Zbl 0572.76011
[59] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 331-407, (1949) · Zbl 0037.13104
[60] Rutkevich, I.M., On the thermodynamic interpretation of the evolutionary conditions of the equations of the mechanics of finitely deformable viscoelastic media of Maxwell type, J. Appl. Math. Mech., 36, 283-295, (1972) · Zbl 0322.73023
[61] Dupret, F.; Marchal, J.M., Loss of evolution in the flow of viscoelastic fluids, J. Non-Newton. Fluid Mech., 20, 143-171, (1986) · Zbl 0629.76008
[62] Trangenstein, J.A.; Colella, P., A higher-order Godunov method for modeling finite deformation in elastic-plastic solids, Commun. Pure Appl. Math., 44, 41-100, (1991) · Zbl 0714.73027
[63] Radhakrishnan, K., Hindmarsh, A.C.: Description and use of LSODE, the Livermore solver for ordinary differential equations. National Aeronautics and Space Administration (1993)
[64] MATLAB and Statistics Toolbox Release. The MathWorks, Inc., Natick, Massachusetts, United States (2012) · Zbl 0835.76036
[65] Sadovskii, V.M.; Sadovskaya, O.V., On the acoustic approximation of thermomechanical description of a liquid crystal, Phys. Mesomech., 16, 312-318, (2013)
[66] Shliomis, M.I.: Hydrodynamics of a liquid with intrinsic rotation. Sov. J. Exp. Theor. Phys. 24, 173-177 (1967). Available from: http://www.jetp.ac.ru/cgi-bin/dn/e_024_01_0173.pdf · Zbl 0153.56802
[67] Berezin, Y.A.; Trofimov, V.M., A model of non-equilibrium turbulence with an asymmetric stress. application to the problems of thermal convection, Contin. Mech. Thermodyn., 7, 415-437, (1995) · Zbl 0835.76036
[68] Saurel, R.; Metayer, O.L.; Massoni, J.; Gavrilyuk, S., Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 209-232, (2007) · Zbl 1195.76245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.