A poroplastic model of structural reorganisation in porous media of biomechanical interest. (English) Zbl 1348.74097

Contin. Mech. Thermodyn. 28, No. 1-2, 579-601 (2016); erratum ibid. 28, No. 3, 919-920 (2016).
Summary: We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of “plastic” distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
76S05 Flows in porous media; filtration; seepage
92C10 Biomechanics
Full Text: DOI


[1] Ambrosi, D.; Mollica, F., On the mechanics of a growing tumor, Int. J. Eng. Sci., 40, 1297-1316, (2002) · Zbl 1211.74161
[2] Ambrosi, D.; Preziosi, L., On the closure of mass balance models for tumour growth, Math. Models Methods Appl. Sci., 12, 737-754, (2002) · Zbl 1016.92016
[3] Ambrosi, D.; Preziosi, L.; Vitale, G., The insight of mixtures theory for growth and remodeling, Z. Angew. Math. Phys., 61, 177-191, (2010) · Zbl 1273.74063
[4] Ambrosi, D.; Preziosi, L.; Vitale, G., The interplay between stress and growth in solid tumors, Mech. Res. Commun., 42, 87-91, (2012)
[5] Andreaus, U.; Colloca, M.; Iacoviello, D.; Pignataro, M., Optimal-tuning PID control of adaptive materials for structural efficiency, Struct. Multidiscipl. Optim., 43, 43-59, (2011)
[6] Andreaus, U.; Colloca, M.; Iacoviello, D., An optimal control procedure for bone adaptation under mechanical stimulus, Control Eng. Pract., 20, 575-583, (2012)
[7] Andreaus U., Colloca M., Iacoviello D.: Modelling of trabecular architecture as result of an optimal control procedure. In: Iacoviello, D., Andreaus, U. (eds) Biomedical Imaging and Computational Modeling in Biomechanics, Chapter II, pp. 19-37. Springer, Dordrecht (2012)
[8] Andreaus, U.; Colloca, M.; Iacoviello, D., Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling, Comput. Methods Programs Biomed., 113, 80-91, (2014)
[9] Andreaus, U.; Giorgio, I.; Lekszycki, T., A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time, J. Appl. Math. Mech., 8, 1-23, (2013) · Zbl 1303.74029
[10] Andreaus, U., Giorgio, I., Madeo, A.: The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Contin. Mech. Thermodyn. doi:10.1007/s00161-014-0397-y · Zbl 1348.74242
[11] Andreaus, U.; Giorgio, I.; Madeo, A., Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids, Z. Angew. Math. Phys., 66, 209-237, (2015) · Zbl 1317.74064
[12] Ateshian, G.A., On the theory of reactive mixtures for modeling biological growth, Biomech. Model. Mechanobiol., 6, 423-445, (2007)
[13] Ateshian, G.A.; Weiss, J.A., Anisotropic hydraulic permeability under finite deformation, J. Biomed. Eng., 132, 111004-111007, (2010)
[14] Bear J.: Dynamics of Fluids in Porous Media. Dover Publications Inc., New York (1972) · Zbl 1191.76001
[15] Bennethum, L.S.; Murad, M.A.; Cushman, J.H., Macroscale thermodynamics and the chemical potential for swelling porous media, Transp. Porous Media, 39, 187-225, (2000)
[16] Benzi, A.; Golub, G.H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137, (2005) · Zbl 1115.65034
[17] Bigoni, D.; Zaccaria, D., Strong ellipticity of comparison solids in elastoplasticity with volumetric non-associativity, Int. J. Solid Struct., 29, 2123-2136, (1992) · Zbl 0763.73016
[18] Bigoni, D.; Zaccaria, D., On the eigenvalues of the acoustic tensor in elastoplasticity, Eur. J. Mech. A/Solids, 13, 621-638, (1994) · Zbl 0818.73024
[19] Bonet J., Wood R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge, NY (2008) · Zbl 1142.74002
[20] Bowen, R.M., Compressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 20, 697-735, (1982) · Zbl 0484.76102
[21] Cermelli, P.; Fried, E.; Sellers, S., Configurational stress, yield and flow in rate-independent plasticity, Proc. R. Soc. A, 457, 1447-1467, (2001) · Zbl 1014.74016
[22] Cleja-Tigoiu, S.; Maugin, G.A., Eshelby’s stress tensors in finite elastoplasticity, Acta Mech., 139, 231-249, (2000) · Zbl 0951.74009
[23] Contrafatto, L.; Cuomo, M., A new thermodynamically consistent continuum model for hardening plasticity coupled with damage, Int. J. Sol. Struct., 39, 6241-6271, (2002) · Zbl 1032.74509
[24] Cuomo, M.; Contrafatto, L., Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation, Int. J. Sol. Struct., 37, 3935-3964, (2000) · Zbl 0961.74007
[25] Del Bufalo, G., Placidi L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 1-17, ISSN: 0964-1726. doi:10.1088/0964-1726/17/4/045010 · Zbl 1211.74161
[26] dell’Isola, F.; Rosa, L.; Woźniak, C., Dynamics of solids with micro periodic nonconnected fluid inclusions, Arch. Appl. Mech., 67, 215-228, (1997) · Zbl 0888.73004
[27] DiCarlo, A.; Quiligotti, S., Growth and balance, Mech. Res. Commun., 29, 449-456, (2002) · Zbl 1056.74005
[28] Emerenyev, V.; Pietraszkiewicz, W., The nonlinear theory of elastic shells with phase transitions, J. Elast., 85, 67-86, (2004) · Zbl 1058.74058
[29] Epstein M.: The Geometric Language of Continuum Mechanics. Cambridge University Press, Cambridge (2010) · Zbl 1286.53004
[30] Epstein, M.; Maugin, G.A., The energy-momentum tensor and material uniformity in finite elasticity, Acta Mech., 83, 127-133, (1990) · Zbl 0714.73029
[31] Epstein, M.; Maugin, G.A., Thermomechanics of volumetric growth in uniform bodies, Int. J. Plast., 16, 951-978, (2000) · Zbl 0979.74006
[32] Eve, R.A.; Reddy, B.D., The variational formulation and solution of problems of finite-strain elastoplasticity based on the use of a dissipation function, Int. J. Numer. Methods Eng., 37, 1673-1695, (1994) · Zbl 0805.73079
[33] Federico, S., Covariant formulation of the tensor algebra of non-linear elasticity, Int. J. Nonlinear Mech., 47, 273-284, (2012)
[34] Federico, S.: Porous materials with statistically oriented reinforcing fibres. In: Dorfmann, L., Ogden, R.W. (eds.) Nonlinear Mechanics of Soft Fibrous Materials (CISM Courses and Lectures No. 559, International Centre for Mechanical Sciences), pp. 49-120. Springer, Berling (2015)
[35] Federico, S.; Grillo, A., Elasticity and permeability of porous fibre-reinforced materials under large deformations, Mech. Mater., 44, 58-71, (2012)
[36] Federico, S.; Herzog, W., On the permeability of fibre-reinforced porous materials, Int. J. Solids Struct., 45, 2160-2172, (2008) · Zbl 1151.74016
[37] Federico, S.; Herzog, W., On the anisotropy and inhomogeneity of permeability in articular cartilage, Biomech. Model Mechanobiol., 7, 367-378, (2008)
[38] Fusi, L.; Farina, A.; Ambrosi, D., Mathematical modelling of a solid-liquid mixture with mass exchange between constituents, Math. Mech. Solids, 11, 575-595, (2006) · Zbl 1143.74024
[39] Gabriel, G.; Bathe, K.-J., Some computational issues in large strain elasto-plastic analysis, Comput. Struct., 56, 249-267, (1995) · Zbl 0918.73148
[40] Ganghoffer, J.-F.: On Eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081-2098 (2010) · Zbl 1231.74011
[41] Gasser, T.C., An irreversible constitutive model for fibrous soft biological tissue: A 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms, Acta Biomater., 7, 2457-2466, (2011)
[42] Giverso, C.; Preziosi, L., Modelling the compression and reorganization of cell aggregates, Math. Med. Biol., 29, 181-204, (2012) · Zbl 1328.92016
[43] Giverso, C., Scianna, M., Grillo, A.: Growing avascular tumours as elasto-plastic bodies by the theory of evolving natural configurations. Mech. Res. Commun. (2015). doi:10.1016/j.mechrescom.2015.04.004 · Zbl 1213.74226
[44] Grillo, A.; Giverso, C.; Favino, M.; Krause, R.; Lampe, M.; Wittum, G.; Delgado, J.M.P.Q. et al. (ed.), Mass transport in porous media with variable mass, (2012), Berlin
[45] Grillo, A.; Federico, S.; Wittum, G., Growth, mass transfer and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Nonlinear Mech., 47, 388-401, (2012)
[46] Grillo, A., Guaily, A., Giverso, C., Federico, S.: Non-linear model for compression tests on articular cartilage. J. Biomech. Eng. (2015). doi:10.1115/1.4030310
[47] Grillo, A., Prohl, R., Wittum, G.: A generalised algorithm for anelastic processes in elastoplasticity and biomechanics. Math. Mech. Solids. (Accepted) · Zbl 1373.74105
[48] Grillo, A.; Federico, S.; Wittum, G.; Giaquinta, G.; Imatani, S.; Mićunović, M.V., Evolution of a fiber-reinforced mixture, Nuovo Cimento C, 32, 97-119, (2009)
[49] Grillo, A.; Wittum, G.; Giaquinta, G.; Mićunović, M.V., A multiscale analysis of growth and diffusion dynamics in biological mixtures, Int. J. Eng. Sci., 47, 261-283, (2009) · Zbl 1213.74226
[50] Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids. doi:10.1177/1081286513515265 · Zbl 1329.74193
[51] Guilak, F.; Ratcliffe, A.; Mow, V.C., Chondrocyte deformation and local tissue straining articular cartilage: a confocal microscopy study, J. Orthop. Res., 13, 410-421, (1995)
[52] Guillou, A.; Ogden, R.W.; Holzapfel, G.A. (ed.); Ogden, R.W. (ed.), Growth in soft biological tissue and residual stress development, (2006), Berlin
[53] Hackl, K.; Fischer, F.D., On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. R. Soc. A, 464, 117-132, (2008) · Zbl 1135.80005
[54] Han, S.-K.; Federico, S.; Grillo, A.; Giaquinta, G.; Herzog, W., The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage, Biomech. Model. Mechanobiol., 6, 139-150, (2007)
[55] Han, S.-K.; Federico, S.; Herzog, W., A depth-dependent model of the pericellular microenvironment of chondrocytes in articular cartilage, Comput. Methods Biomech. Biomed. Eng., 14, 657-664, (2010)
[56] Hassanizadeh, M.S., Derivation of basic equations of mass transport in porous media. part II. generalized darcy’s and fick’s laws, Adv. Water Resour., 9, 208-222, (1986)
[57] Holmes, M.H.; Mow, V.C., The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration, J. Biomech., 23, 1145-1156, (1990)
[58] Holzapfel, G.A.; Gasser, T.C.; Ogden, R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61, 1-48, (2000) · Zbl 1023.74033
[59] Hughes T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000) · Zbl 1191.74002
[60] Lekszycki, T.; dell’Isola, F., A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials, ZAMM J. Appl. Math. Mech., 6, 426-444, (2012) · Zbl 1241.92010
[61] Liu, Y.; Zhang, H.; Zheng, Y.; Zhang, S.; Chen, B., A nonlinear finite element model of the stress analysis of soft solids with a growing mass, Int. J. Solids Struct., 51, 242964-242978, (2014)
[62] Loret, B.; Simões, F.M.F., A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues, Eur. J. Mech. A/Solids, 24, 757-781, (2005) · Zbl 1125.74360
[63] Lubarda, V.A.; Hoger, A., On the mechanics of solids with a growing mass, Int. J. Solids Struct., 39, 4627-4664, (2002) · Zbl 1045.74035
[64] Lubarda, V.A., Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics, Appl. Mech. Rev., 57, 95-108, (2004)
[65] Lubliner J.: Plasticity Theory. Dover Publications, Inc., Mineola, NY (2008) · Zbl 1201.74002
[66] Madeo, A.; Lekszycki, T.; dell’Isola, F., A continuum model for the biomechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery, CR Mecanique, 339, 625-640, (2011)
[67] Madeo, A.; dell’Isola, F.; Darve, F., A continuum model for deformable, second gradient porous media partially saturated with compressible fluids, J. Mech. Phys. Sol., 61, 2196-2211, (2013)
[68] Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Dover Publications Inc., New York (1983) · Zbl 0545.73031
[69] Maugin, G.A.; Epstein, M., Geometrical material structure of elastoplasticity, Int. J. Plast., 14, 109-115, (1998) · Zbl 0911.73028
[70] Menzel, A., A fibre reorientation model for orthotropic multiplicative growth. configurational driving stresses, kinematics-based reorientation and algorithmic aspects, Biomech. Model. Mechanobiol., 6, 303-320, (2007)
[71] Mićunović M.V.: Thermomechanics of Viscoplasticity—Fundamentals and Applications. Springer, Heidelberg (2009) · Zbl 1162.74001
[72] Minozzi, M., Nardinocchi, P., Teresi, L., Varano, V.: Growth-induced compatible strains. Math. Mech. Solids (2015). doi:10.1177/1081286515570510 · Zbl 1371.74044
[73] Moo, E.K.; Herzog, W.; Han, S.-K.; Abu Osman, N.A.; Pingguan-Murphy, B.; Federico, S., Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study, Biomech. Model. Mechanobiol., 11, 983-993, (2012)
[74] Moo, E.K.; Han, S.-K.; Federico, S.; Jinha, A.; Sibole, S.; Abu Osman, N.A.; Pingguan-Murphy, B.; Herzog, W., Extracellular matrix integrity affects the mechanics of in-situ chondrocytes under compression, J. Biomech., 47, 1004-1013, (2014)
[75] Montáns, F.J.; Bathe, K.-J., Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin, Int. J. Numer. Methods Eng., 63, 159-196, (2005) · Zbl 1118.74350
[76] Nedjar, B., On finite strain poroplasticity with reversible and irreversible porosity laws. formulation and computational aspects, Mech. Mater., 68, 237-252, (2014)
[77] Olsson, T.; Klarbring, A., Residual stresses in soft tissue as a consequence of growth and remodelling: application to an arterial geometry, Eur. J. Mech. A/Solids, 27, 959-974, (2008) · Zbl 1151.74387
[78] Pierce, D.M.; Ricken, T.; Holzapfel, G.A., A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications, Comput. Methods Biomech. Biomed. Eng., 16, 1344-1361, (2013)
[79] Pierce, D.M.; Ricken, T.; Holzapfel, G.A., Modeling sample/patient-specific structural and diffusional responses of cartilage using DT-MRI, Int. J. Numer. Methods Biomed. Eng., 29, 807-821, (2013)
[80] Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. (2014). ISSN: 0935-1175. doi:10.1007/s00161-014-0405-2 · Zbl 1348.74062
[81] Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 1-16 (2014). ISSN: 0935-1175. doi:10.1007/s00161-14-0338-9
[82] Placidi, L.; dell’Isola, F.; Ianiro, N.; Sciarra, G., Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena, Eur. J. Mech. A/Solids, 27, 582-606, (2008) · Zbl 1146.74012
[83] Preston, S., Elźanowski, E.: Material uniformity and the concept of the stress space. In: Continuous Media with Microstructure, pp. 91-101, Springer, Heidelberg (2010)
[84] Preziosi, L.; Ambrosi, D.; Verdier, C., An elasto-visco-plastic model of cell aggregates, J. Theor. Biol., 262, 35-47, (2010)
[85] Preziosi, L.; Farina, A., On darcy’s law for growing porous media, Int. J. Non-linear Mech., 37, 485-491, (2002) · Zbl 1346.76194
[86] Preziosi, L.; Vitale, G., A multiphase model of tumour ad tissue growth including cell adhesions and plastic reorganization, Math. Models Methods Appl. Sci., 21, 1901-1932, (2011) · Zbl 1228.92021
[87] Quiligotti, S., On bulk growth mechanics of solid-fluid mixtures: kinematics and invariance requirements, Theor. Appl. Mech. TEOPM, 7, 1-11, (2002) · Zbl 1065.74025
[88] Quiligotti, S.; Maugin, G.A.; dell’Isola, F., An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures, Acta Mech., 160, 45-60, (2003) · Zbl 1064.74061
[89] Rajagopal, K.R.: Multiple Configurations in Continuum Mechanics, vol. 6. Reports of the Institute for Computational and Applied Mechanics · Zbl 1211.74161
[90] Rodriguez, E.K.; Hoger, A.; McCullogh, A.D., Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27, 455-467, (1994)
[91] Sciarra, G.; dell’Isola, F.; Hutter, K., Dilatational and compacting behavior around a cylindrical cavern leached out in a solid-fluid elastic rock salt, Int. J. Geomech., 5, 233-243, (2005)
[92] Simo, J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part I. continuum formulation, Comput. Mech. Appl. M., 66, 199-219, (1988) · Zbl 0611.73057
[93] Simo J.C., Hughes T.J.R.: Computational Plasticity. Springer, New York (1988)
[94] Tomic, A.; Grillo, A.; Federico, S., Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage, IMA J. Appl. Math., 79, 1017-1059, (2014) · Zbl 1299.74171
[95] Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handuch der Physik, III/3. Springer, Berlin · Zbl 0779.73004
[96] Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG4—a novel flexible software system for simulating pde based models on high performance computers. Comput. Vis. Sci. (2013). doi:10.1007/s00791-014-0232-9 · Zbl 1375.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.