Kučera, Milan A global continuation theorem for obtaining eigenvalues and bifurcation points. (English) Zbl 0665.35010 Czech. Math. J. 38(113), No. 1, 120-137 (1988). This paper proves the existence of a connected branch of solutions [\(\lambda\),u,\(\tau\) ] of the equation \(u- T(\lambda)u+H_{\tau}(\lambda,u)=0\), \(u\in Banach\) space with the additional norm condition \(\| u\|^ 2=\delta \tau\) containing at least one \([\lambda_{\tau},u_{\tau},\tau]\) for any \(\tau \in <0,1)\), starting at \([\lambda_ 0,0,0]\) and lying in a suitable subinterval \(J_ 0\) of J (the interval of \(\lambda)\). Here \(\lambda\in J\) is a bifurcation parameter, \(\tau\in (0,1)\) is an additional parameter, \(\delta >0\) is fixed. Reviewer: J.H.Tian Cited in 9 Documents MSC: 35B32 Bifurcations in context of PDEs 39B52 Functional equations for functions with more general domains and/or ranges 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs 35B60 Continuation and prolongation of solutions to PDEs 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs 34G20 Nonlinear differential equations in abstract spaces Keywords:global continuation theorem; eigenvalues; bifurcation points; existence; connected branch; norm condition; bifurcation parameter PDF BibTeX XML Cite \textit{M. Kučera}, Czech. Math. J. 38(113), No. 1, 120--137 (1988; Zbl 0665.35010) Full Text: EuDML OpenURL References: [1] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. Journ., 23 (11), 1974, 1069-1076. · Zbl 0276.47051 [2] P. Drábek M. Kučera M. Míková: Bifurcation points of reaction-diffusion systems with unilateral conditions. Czechoslovak Math. J. 35 (110), 1985, 639-660. · Zbl 0604.35042 [3] P. Drábek M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions. To appear in Nonlinear Analysis. · Zbl 0671.35043 [4] M. Kučera: A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory. Čas. pro pěst. matematiky, 104, 1979, 389-411. [5] M. Kučera: Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (107), 1982, 208-226. · Zbl 0621.49006 [6] M. Kučera: A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues. Czechoslovak Math. J. 32 (107), 1982, 197-207. · Zbl 0621.49005 [7] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, 1969. · Zbl 0189.40603 [8] E. Miersemann: Über höhere Verzweigungspunkte nichtlinearer Variationsungleichungen. Math. Nachr. 85, 1978, 195-213. · Zbl 0324.49036 [9] E. Miersemann: Höhere Eigenwerte von Variationsungleichungen. Beiträge zur Analysis 17, 1981, 65-68. · Zbl 0475.49016 [10] L. Nirenberg: Topics in nonlinear functional analysis. New York 1974. · Zbl 0286.47037 [11] P. H. Rabinowitz: Some global results for non-linear eigenvalue problems. J. Functional Analysis 7, 1971, 487-513. · Zbl 0212.16504 [12] P. Quittner: Spectral analysis of variational inequalities. Comment. Math. Univ. Carol. 27 (1986), 605. · Zbl 0652.49008 [13] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. To appear. · Zbl 0617.35053 [14] G. T. Whyburn: Topological Analysis. Princeton Univ. Press, Princeton, N.J., 1958. · Zbl 0080.15903 [15] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. In Contributions to Nonlinear Functional Analysis (edited by E. H. Zarantonello). Academic Press, New York, 1971. · Zbl 0281.47043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.