Markl, Martin The real K-ring of some CW-complexes of small dimension. (English) Zbl 0665.55001 Czech. Math. J. 38(113), No. 3, 450-455 (1988). In 1981, L. M. Woodward in Proc. R. Soc. Edinb., Sect. A 92, 175- 179 (1982; Zbl 0505.55017) classified the stable classes of orientable vector bundles over CW-complexes of small dimension. Using his results and some algebraic arguments, we describe the real K-ring of some CW- complexes of dimension \(\leq 7\) in terms of cohomology and characteristic classes. We also show that our description can be really used for explicit calculation of K-rings. MSC: 55N15 Topological \(K\)-theory 55R50 Stable classes of vector space bundles in algebraic topology and relations to \(K\)-theory Keywords:K-ring of CW-complexes of dimension \(\leq 7\); cohomology; characteristic classes Citations:Zbl 0505.55017 PDFBibTeX XMLCite \textit{M. Markl}, Czech. Math. J. 38(113), No. 3, 450--455 (1988; Zbl 0665.55001) Full Text: DOI EuDML References: [1] Adams J. R: Vector fields on spheres. Ann. Math. 75 (1962), 603-632. · Zbl 0112.38102 · doi:10.2307/1970213 [2] Borel A.: La cohomologie mod 2 de certains espaces homogènes. Comm. Math. Helv. 27 (1953), 165-197. · Zbl 0052.40301 · doi:10.1007/BF02564561 [3] Karoubi M.: K-Theory. Springer-Verlag 1978. · Zbl 0382.55002 [4] Milnor J. W., Stasheff J. D.: Characteristic classes. Princeton 1974. · Zbl 0298.57008 [5] Mosher R. E., Tangora M. C.: Cohomology operations and applications in homotopy theory. Harper & Row 1968. · Zbl 0153.53302 [6] Switzer R. M.: Algebraic topology - homotopy and homology. Springer-Verlag 1975. · Zbl 0305.55001 [7] Thomas E.: On the cohomology of real Grassmann complexes and the characteristic classes of \(n\)-plane bundles. Trans. Amer. Math. Soc. 96 (1960), 67-89. · Zbl 0098.36301 · doi:10.2307/1993484 [8] Woodward L. M.: The classification of orientable vector bundles over CW-complexes of small dimension. Proc. Royal Soc. Edinburgh, 92A (1982), 175-179. · Zbl 0505.55017 · doi:10.1017/S0308210500032467 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.