zbMATH — the first resource for mathematics

The periodic orbits of an area preserving twist map. (English) Zbl 0665.58034
The author studies the oscillation properties of periodic orbits of an area preserving diffeomorphism of the cylinder \(S^ 1\times {\mathbb{R}}\) onto itself which satisfies an infinite twist condition and also a no flux condition. Periodic orbits of type (p,q) are identified as critical points of an appropriate function W. Two concepts are introduced: (i) the intersection number I(x,y) of two orbits x and y which intersect transversally; this intersection number is nonincreasing under the gradient flow of W [J. Smillie, SIAM J. Math. Anal. 15, 530-534 (1984; Zbl 0546.34007)]; (ii) the twist number \(\tau\) (x) of an orbit, related to the Morse index of the corresponding critical point of W [J. Mather, Commun. Math. Phys. 94, 141-153 (1984; Zbl 0558.58010)].
Using Conley’s generalized Morse theory [see e.g. C. Conley and E. Zehnder, Commun. Pure Appl. Math. 37, 207-253 (1984; Zbl 0559.58019)] it is then shown that the existence of a periodic orbit with \(\tau (x)>0\) implies the existence of two other periodic orbits with twist number zero, and for each integer k with \(0<k<\tau (x)\) the existence of at least two period orbits \(y_ i\) \((i=1,2)\) with \(I(y_ i,x)=2k\). Finally it is shown that there must exist also some homoclinic or heteroclinic orbits.
Reviewer: A.Vanderbauwhede

37G99 Local and nonlocal bifurcation theory for dynamical systems
37A99 Ergodic theory
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI
[1] Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0386.70001
[2] Aubry, S., le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions. Physica8, 381-422 (1983) · Zbl 1237.37059
[3] Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955 · Zbl 0064.33002
[4] Conley, C.: Isolated invariant sets and the Morse index. C.B.M.S. Reg. Conf. Ser. Math.38, Published by the AMS (1978) · Zbl 0397.34056
[5] Conley, C., Zehnder, E.: The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math.73, 33-49 (1983) · Zbl 0516.58017 · doi:10.1007/BF01393824
[6] Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math.37, 207-253 (1984) · Zbl 0559.58019 · doi:10.1002/cpa.3160370204
[7] Dancer, E.N.: Degenerate critical points, homotopy indices and Morse inequalities. J. Reine Angew. Math.350, 1-22 (1984) · Zbl 0525.58012 · doi:10.1515/crll.1984.350.1
[8] Hirsch, M.: Systems of differential equations which are competitive or cooperative, I: Limit sets. SIAM J. Math. Anal.13, 167-179 (1982) · Zbl 0494.34017 · doi:10.1137/0513013
[9] Matano, H.: Nonincrease of the lap-number of a solution for a one dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo29, 401-441 (1982) · Zbl 0496.35011
[10] Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology21, 457-467 (1982) · Zbl 0506.58032 · doi:10.1016/0040-9383(82)90023-4
[11] Mather, J.N.: Amount of rotation about a point and the Morse index. Commun. Math. Phys.94, 141-153 (1984) · Zbl 0558.58010 · doi:10.1007/BF01209299
[12] Moerbeke, P. van: The spectrum of Jacobi matrices. Invent. Math.37, 45-81 (1976) · Zbl 0361.15010 · doi:10.1007/BF01418827
[13] Smillie, J.: Competitive and cooperative tridiagonal systems of differential equations. SIAM J. Math. Anal.15, 531-534 (1984) · Zbl 0546.34007 · doi:10.1137/0515040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.