A multigrid method for a parameter dependent problem in solid mechanics. (English) Zbl 0665.65077

In the finite element calculations of problems in solid mechanics the method of selected reduced integration (SRI) is frequently used to eliminate locking phenomena. Often SRI is equivalent to the application of a mixed method. When multigrid methods are applied the formulation as a mixed method is by far superior. This is shown by an analysis of the Timoshenko beam. It is proved that the convergence rate of the multigrid method for the mixed model is independent of the penalty parameter as the latter tends to zero. To this end a general theory for mixed methods with penalty terms is presented. The theoretical results are verified by numerical results for the mixed method and for the displacement model with SRI.
Reviewer: D.Braess


65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
65F10 Iterative numerical methods for linear systems
Full Text: DOI EuDML


[1] Arnold, D.N.: Discretization by finite elements of a model parameter dependent problem. Numer. Math.37, 405-421 (1981) · Zbl 0446.73066
[2] Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Mindlin-Reissner plate. SIAM J. Numer. Anal. (to appear) · Zbl 0696.73040
[3] Babu?ka, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput.35, 1039-1062 (1980) · Zbl 0472.65083
[4] Bank, R.E., Douglas, C.C.: Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. SIAM J. Numer. Anal.22, 617-633 (1985) · Zbl 0578.65025
[5] Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput.36, 35-51 (1981) · Zbl 0466.65059
[6] Blömer, C.: Zweigitterverfahren für die Finite-Elemente-Diskretisierung des Timoshenko-Balkens mit reduzierter Integration. Diplomarbeit, Ruhr-Universität 1988
[7] Braess, D.: A multigrid method for the membrane problem. Computational Mechanics3, 321-329 (1988) · Zbl 0639.73010
[8] Braess, D., Hackbusch W.: A new convergence proof for the multigrid method including the V-cycle. SIAM J. Numer. Anal.20, 967-975 (1983) · Zbl 0521.65079
[9] Braess, D., Verfürth, R.: Multi-gird methods for non-conforming finite element methods. (submitted) · Zbl 0703.65067
[10] Brezzi, F.: On the existence, uniqueness and approximations of saddle-point problems arising from Lagrangian multipliers. RAIRO8, 129-151 (1974) · Zbl 0338.90047
[11] Brezzi, F., Fortin, M.: Numerical approximation of Mindlin/Reissner plates. Math. Comput.47, 151-158 (1986) · Zbl 0596.73058
[12] Gireault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Heidelberg Berlin New York: Springer 1986
[13] Hackbusch, W.: Multi-Grid Methods. Heidelberg Berlin New York: Springer 1985 · Zbl 0595.65106
[14] Hackbusch, W.: Analysis and multi-grid solution of mixed finite element and mixed difference equations. Report, Ruhr-Universität Bochum 1980
[15] Huang, Z.: A multi-grid algorithm for mixed problems with penalty. (submitted)
[16] Mandel, J.: Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step. Appl. Math. Comput.19, 201-216 (1986) · Zbl 0614.65031
[17] Johnson, C., Pitkäranta, J.: Analysis of some mixed finite element integration. Math. Comput.38, 375-400 (1982) · Zbl 0482.65058
[18] Peisker, P.: A multilevel algorithm for the biharmonic problem. Numer. Math.46, 623-634 (1985) · Zbl 0554.65079
[19] Pitkäranta, J.: Analysis of some low-order finite element schemes for Mindlin-Reissner and Kirchhoff plates. Numer. Math.53, 237-254 (1988) · Zbl 0654.73043
[20] Verfürth, R.: Multi-level algorithms for mixed problems II, Treatment of the Mini-element. SIAM J. Numer. Anal.25, 285-293 (1988) · Zbl 0669.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.