Some fast 3D finite element solvers for the generalized Stokes problem. (English) Zbl 0665.76038

This paper is devoted to a comparison of various iterative solvers for the Stokes problem, based on the preconditioned Uzawa approach. In the first section the basic equations and general results of gradient-like methods are recalled. Then a new class of preconditioners, whose optimality will be shown, is introduced. In the last section numerical experiments and comparisons with multigrid methods prove the quality of these schemes, whose discretization is detailed.


76D07 Stokes and related (Oseen, etc.) flows
76M99 Basic methods in fluid mechanics
Full Text: DOI


[1] ’Mixed finite element and iterative solution procedure’, Innovative Methods for Non-linear Problems, Pineridge Press International, London, 1984.
[2] , and , ’About difficulties raised by a refined turbulence modelling in a Navier-Slokes finite element code’, Seventh Int. Conf. on Computing Methods in Applied Sciences and Engineering, Versailles, France, 1985.
[3] , and , ’Recent advances in shallow water computations’, Sixth Int. Symp. on Finite Element Methods in Flow Problems, Antibes, France, 1986.
[4] Goussebaile, Int. j. numer. methods fluids 4 pp 1117– (1984)
[5] ’Resolution des équations de St Venant en regime transcritique par une méthode d’éléments finis: application aux banes decouvrants’, Thèse, Université Paris VI, 1987.
[6] and , ’Numerical methods for the Stokes problem. Applications to compressible and incompressible viscous flow simulation’, in preparation.
[7] and , ’A 3D FEM for turbulent industrial flows’, First World Congress on Computational Mechanics, Austin, Texas; U.S.A., 1986.
[8] and , Computational Methods for Fluid Flow, Springer Verlag, 1982.
[9] ’Méthodes de sous-structuration de domaines pour les équations de Navier-Stokes’, EDF Report HE41/85.03, 1985.
[10] , and , ’A finite element method for Navier-Stokes equations’, in (ed.), Proc. Third Int. Conf. on Finite Elements in Flow Problems, Banff, Alberta, Canada, 10-13 June 1980, vol. 1, pp. 10-120.
[11] ’Resolution des équations de Navier-Stokes par une méthode d’éléments finis’, Thèse de 3eme Cycle, Université Paris-Sud, 1981; and EDF Report HE41/81.15, 1981.
[12] Chorin, SIAM J. Numer. Anal. 2 pp 64– (1968)
[13] Navier-Stokes Equations, North-Holland, Amsterdam, 1977.
[14] Numerical Methods for Non-Linear Vocational Problems, Springer Verlag, New York, 1984.
[15] , , , and , ’Application of the optimal control and finite element methods to the calculation of transonic flows and incompressible flows’, Research Report 78-294, INRIA, France, 1978.
[16] and , ’Finite element methods for incompressible Navier-Stokes and for shallow water equations’, in Von Karman Institute Lecture Series, Rhodes St Genese, Belgium, March 1986; and EDF Report HE41/86.03, 1986.
[17] and , ’Finite element approximation of the Navier-Stokes equations’, Lecture Notes in Mathematics, vol. 749, Springer Verlag, 1979.
[18] ’Singularités des solutions du problème de Stokes dans un polygone’, Séminaire d’ Analyse Numérique, Université Paris VI, 1978.
[19] and , ’Application a la thermohydraulique des Méthodes d’éclatement d’operateurs dans lé cadre elements finis: traitement du modèle {\(\kappa\)}-{\(\epsilon\)}’, EDF Report HE41/85.11, 1985.
[20] and , ’Methodes Mixtes pour les équations de Navier-Stokes dans un ouvert polygonal plan’, Publication du Laboratoire d’ Analyse Numerique, n{\(\deg\)} 80015, Universite Paris VI, 1980.
[21] ’Invariants des équations de la mécanique. Remarques sur les équations de Navier-Stokes dans l cas stationnaire’, Thèse, Université Paris-Sud, 1981
[22] Lectures at Centre de Mathématiques Appliquées, Ecole Polytechnique, 1985 and Universite Paris VI, 1986.
[23] and , Studies in Non-linear Programing, Stanford University Press, 1958.
[24] and , Augmented Lagrangian Methods, North-Holland Amsterdam, 1983.
[25] Hestenes, J. Optim. Theory Appl. 4 pp 303– (1969)
[26] ’A method for non-linear constraints in minimization problems’, in (ed.), Minimization, Academic Press, London, 1969, pp. 238-298.
[27] Verfurth, IMA J. Numer. Math. 4 pp 441– (1984) · Zbl 0563.76028
[28] ’A preconditioned conjugate residual algorithm for the Stokes problem’, in and (eds), Developments in Multigrid Methods, Wiley, New York. 1985. · Zbl 0607.76029
[29] ’Une nouvelle classe de Méthodes multigrilles pour les problèmes mixtes. Application à la résolution rapide du problème de Stokes’, Thèse, Ecole Centrale de Lyon, 1984.
[30] and , Resolution Numérique des Grands Systèmes Linéaires, Eyrolles, Paris, 1983.
[31] and , ’Quelques Méthodes de resolution du problème de Stokes en elements finis’, EDF Report HE41/83.01, 1983.
[32] and , ’Multi-domains and multi-solvers finite element approach for the Stokes problems’, in Innovative Numerical Methods in Engineering, Springer Verlag, New York, 1986; and EDF Report HE41/85.27, 1985.
[33] Goutal, Mathematical Methods in the Applied Sciences.
[34] and (eds), Problèmes aux Limites Homogènes et Applications, Dunod, Paris, 1968.
[35] Glowinski, Numer. Math. 33 pp 397– (1979)
[36] (ed.), ’Mulligrid convergence theory’, in Multigrid Methods, Springer Verlag, Berlin, 1982, pp. 177-219.
[37] Hood, Comput. Fluids 1 pp 73– (1973)
[38] ’A computation method for the determination of the flow field around vehicles’, Vehicle Aerodynamics in Von Karman Institute Lectures Series, Rhodes St Genese, Belgium, May 1986; and EDF Report HE41/86.07, 1986.
[39] ’Validation du code elements finis N3S sur le problème de l’écoulement derriere un cylindre circulate’, EDF Report HE4J/85.23, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.