×

zbMATH — the first resource for mathematics

SARAH 4: a tool for (not only SUSY) model builders. (English) Zbl 1348.81026
Summary: We present the new version of the Mathematica package SARAH which provides the same features for a non-supersymmetric model as previous versions for supersymmetric models. This includes an easy and straightforward definition of the model, the calculation of all vertices, mass matrices, tadpole equations, and self-energies. Also the two-loop renormalization group equations for a general gauge theory are now included and have been validated with the independent Python code PyR@TE. Model files for FeynArts, CalcHep/CompHep, WHIZARD and in the UFO format can be written, and source code for SPheno for the calculation of the mass spectrum, a set of precision observables, and the decay widths and branching ratios of all states can be generated. Furthermore, the new version includes routines to output model files for Vevacious for both, supersymmetric and non-supersymmetric, models. Global symmetries are also supported with this version and by linking Susyno the handling of Lie groups has been improved and extended.

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81T10 Model quantum field theories
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] F. Staub, SARAH, 2008.
[2] Staub, F., From superpotential to model files for feynarts and calchep/comphep, Comput. Phys. Commun., 181, 1077-1086, (2010) · Zbl 1215.81008
[3] Staub, F., Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun., 182, 808-833, (2011) · Zbl 1214.81168
[4] Staub, F., SARAH 3.2: Dirac gauginos, UFO output, and more, Computer Physics Communications, 184, 1792-1809, (2013)
[5] Ender, K.; Graf, T.; Muhlleitner, M.; Rzehak, H., Analysis of the NMSSM Higgs boson masses at one-loop level, Phys. Rev., D85, 075024, (2012)
[6] Graf, T.; Grober, R.; Muhlleitner, M.; Rzehak, H.; Walz, K., Higgs boson masses in the complex NMSSM at one-loop level, J. High Energy Phys., 1210, 122, (2012)
[7] A. Kaminska, G.G. Ross, K. Schmidt-Hoberg, Non-universal gaugino masses and fine tuning implications for SUSY searches in the MSSM and the GNMSSM, 2013.
[8] J. List, B. Vormwald, Bilinear R parity violation at the ILC—neutrino physics at colliders, 2013.
[9] H. Dreiner, K. Nickel, F. Staub, \(B_{s, d}^0 \rightarrow \mu \overline{\mu}\) and \(B \rightarrow X_s \gamma\) in the R-parity violating MSSM, 2013.
[10] Abada, A.; Figueiredo, A.; Romao, J.; Teixeira, A., Probing the supersymmetric type III seesaw: LFV at low-energies and at the LHC, J. High Energy Phys., 1108, 099, (2011)
[11] Bhupal Dev, P.; Mondal, S.; Mukhopadhyaya, B.; Roy, S., Phenomenology of light sneutrino dark matter in cmssm/msugra with inverse seesaw, J. High Energy Phys., 1209, 110, (2012)
[12] De Romeri, V.; Hirsch, M., Sneutrino dark matter in low-scale seesaw scenarios, J. High Energy Phys., 1212, 106, (2012)
[13] Esteves, J.; Romao, J.; Hirsch, M.; Vicente, A.; Porod, W., LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM, J. High Energy Phys., 1012, 077, (2010) · Zbl 1294.81337
[14] Krauss, M. E.; Porod, W.; Staub, F., SO(10) inspired gauge-mediated supersymmetry breaking, Phys. Rev., D88, 015014, (2013)
[15] O’Leary, B.; Porod, W.; Staub, F., Mass spectrum of the minimal SUSY B-L model, J. High Energy Phys., 1205, 042, (2012)
[16] Hirsch, M.; Porod, W.; Reichert, L.; Staub, F., Phenomenology of the minimal supersymmetric \(U(1)_{B - L} \times U(1)_R\) extension of the standard model, Phys. Rev., D86, 093018, (2012)
[17] Frugiuele, C.; Gregoire, T.; Kumar, P.; Ponton, E., ‘\(L = R\)’—\(U(1)_R\) as the origin of leptonic ‘RPV’, J. High Energy Phys., 1303, 156, (2013)
[18] Benakli, K.; Goodsell, M. D.; Staub, F., Dirac gauginos and the 125 gev Higgs, J. High Energy Phys., 1306, 073, (2013)
[19] D.S. Alves, P.J. Fox, N. Weiner, Supersymmetry with a Sister Higgs, 2012.
[20] A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages, 2004.
[21] E. Boos, M. Dubinin, V. Ilyin, A. Pukhov, V. Savrin, CompHEP: Specialized package for automatic calculations of elementary particle decays and collisions, 1994.
[22] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418-431, (2001) · Zbl 0994.81082
[23] Hahn, T., Formcalc 6, PoS, ACAT08, 121, (2008)
[24] Kilian, W.; Ohl, T.; Reuter, J., WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J., C71, 1742, (2011)
[25] M. Moretti, T. Ohl, J. Reuter, O’Mega: an optimizing matrix element generator, 2001.
[26] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O., UFO—the universal feynrules output, Comput. Phys. Commun., 183, 1201-1214, (2012)
[27] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., Madgraph 5: going beyond, J. High Energy Phys., 1106, 128, (2011) · Zbl 1298.81362
[28] Cullen, G.; Greiner, N.; Heinrich, G.; Luisoni, G.; Mastrolia, P., Automated one-loop calculations with gosam, Eur. Phys. J., C72, 1889, (2012)
[29] Gieseke, S.; Ribon, A.; Seymour, M. H.; Stephens, P.; Webber, B., Herwig++ 1.0: an event generator for e^{+}e^{−} annihilation, J. High Energy Phys., 0402, 005, (2004)
[30] S. Gieseke, D. Grellscheid, K. Hamilton, A. Ribon, P. Richardson, et al. Herwig++ 2.0 Release Note, 2006.
[31] J. Bellm, S. Gieseke, D. Grellscheid, A. Papaefstathiou, S. Platzer, et al. Herwig++ 2.7 Release Note, 2013.
[32] Porod, W., Spheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e^{+} e^{−} colliders, Comput. Phys. Commun., 153, 275-315, (2003)
[33] Porod, W.; Staub, F., Spheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun., 183, 2458-2469, (2012)
[34] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., Higgsbounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the tevatron, Comput. Phys. Commun., 181, 138-167, (2010) · Zbl 1205.82001
[35] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., Higgsbounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the tevatron, Comput. Phys. Commun., 182, 2605-2631, (2011)
[36] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, 2013.
[37] Fonseca, R. M., Calculating the renormalisation group equations of a SUSY model with susyno, Comput. Phys. Commun., 183, 2298-2306, (2012)
[38] J. Camargo-Molina, B. O’Leary, W. Porod, F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, 2013.
[39] Wainwright, C. L., Cosmotransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun., 183, 2006-2013, (2012)
[40] Semenov, A., Lanhep: a package for automatic generation of Feynman rules from the Lagrangian, Comput. Phys. Commun., 115, 124-139, (1998) · Zbl 1006.81501
[41] A. Semenov, LanHEP: a package for automatic generation of Feynman rules in field theory. Version 2.0, 2002.
[42] Semenov, A., Lanhep: a package for the automatic generation of Feynman rules in field theory. version 3.0, Comput. Phys. Commun., 180, 431-454, (2009) · Zbl 1198.81021
[43] A. Semenov, LanHEP—a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, 2010. · Zbl 1348.81025
[44] Christensen, N. D.; Duhr, C., Feynrules—feynman rules made easy, Comput. Phys. Commun., 180, 1614-1641, (2009)
[45] Christensen, N. D.; Duhr, C.; Fuks, B.; Reuter, J.; Speckner, C., Introducing an interface between WHIZARD and feynrules, Eur. Phys. J., C72, 1990, (2012)
[46] A. Bharucha, A. Goudelis, M. McGarrie, En-gauging naturalness, 2013.
[47] Martin, S. P.; Vaughn, M. T., Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev., D50, 2282, (1994)
[48] Fonseca, R. M.; Malinsky, M.; Porod, W.; Staub, F., Running soft parameters in SUSY models with multiple \(U(1)\) gauge factors, Nucl. Phys., B854, 28-53, (2012) · Zbl 1229.81181
[49] Goodsell, M. D., Two-loop RGEs with Dirac gaugino masses, J. High Energy Phys., 1301, 066, (2013)
[50] Machacek, M. E.; Vaughn, M. T., Two loop renormalization group equations in a general quantum field theory. 1. wave function renormalization, Nuclear Phys., B222, 83, (1983)
[51] Machacek, M. E.; Vaughn, M. T., Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nuclear Phys., B236, 221, (1984)
[52] Machacek, M. E.; Vaughn, M. T., Two loop renormalization group equations in a general quantum field theory. 3. scalar quartic couplings, Nuclear Phys., B249, 70, (1985)
[53] Luo, M.-x.; Wang, H.-w.; Xiao, Y., Two-loop renormalization group equations in general gauge field theories, Phys. Rev., D67, 065019, (2003)
[54] R.M. Fonseca, M. Malinsky, F. Staub, Renormalization group equations and matching in a general quantum field theory with kinetic mixing, 2013. · Zbl 1331.81215
[55] Sperling, M.; Stöckinger, D.; Voigt, A., Renormalization of vacuum expectation values in spontaneously broken gauge theories, J. High Energy Phys., 1307, 132, (2013) · Zbl 1342.81201
[56] F. Lyonnet, I. Schienbein, F. Staub, A. Wingerter, PyR@TE: renormalization group equations for general gauge theories, 2013. · Zbl 1360.81019
[57] Dreiner, H.; Nickel, K.; Porod, W.; Staub, F., Full 1-loop calculation of BR\((B_{s, d}^0 \rightarrow \ell \overline{\ell})\) in models beyond the MSSM with SARAH and spheno, Comput. Phys. Commun., 184, 2604-2617, (2013)
[58] Staub, F.; Ohl, T.; Porod, W.; Speckner, C., A tool box for implementing supersymmetric models, Comput. Phys. Commun., 183, 2165-2206, (2012)
[59] Belanger, G.; Christensen, N. D.; Pukhov, A.; Semenov, A., Slhaplus: a library for implementing extensions of the standard model, Comput. Phys. Commun., 182, 763-774, (2011) · Zbl 1214.81322
[60] J. Camargo-Molina, B. O’Leary, W. Porod, F. Staub, Stability of the CMSSM against sfermion VEVs, 2013.
[61] Martin, S. P., Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev., D65, 116003, (2002)
[62] Lee, T.; Li, T.; Tsai, C., Hom4ps-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method, Computing, 83, 2, 109-133, (2008) · Zbl 1167.65366
[63] T. Ohl, Feynmf: drawing Feynman diagrams with latex and metafont, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.