ATUS-PRO: a FEM-based solver for the time-dependent and stationary Gross-Pitaevskii equation. (English) Zbl 1348.35005

Summary: ATUS-PRO is a solver-package written in C++ designed for the calculation of numerical solutions of the stationary- and the time dependent Gross-Pitaevskii equation for local two-particle contact interaction utilising finite element methods. These are implemented by means of the deal.II library [W. Bangerth et al., “The deal.II library, version 8.2”, Arch. Numer. Softw. 3, No. 100, 9 p. (2015; doi:10.11588/ans.2015.100.18031)], [W. Bangerth et al., “deal.II – a general purpose object oriented finite element library”, ACM Trans. Math. Softw. 33, No. 4, Article ID 24, 27 p. (2007; doi:10.1145/1268776.1268779)]. The code can be used in order to perform simulations of Bose-Einstein condensates in gravito-optical surface traps, isotropic and full anisotropic harmonic traps, as well as for arbitrary trap geometries. A special feature of this package is the possibility to calculate non-ground state solutions (topological modes, excited states) [the first author et al., Comput. Phys. Commun. 184, No. 8, 1920–1930 (2013; Zbl 1344.81076)], [V. I. Yukalov et al., “Non-ground-state Bose-Einstein condensates of trapped atoms”, Phys. Rev. A (3) 56, No. 6, 4845–4854 (1997; doi:10.1103/PhysRevA.56.4845); “Resonant generation of topological modes in trapped Bose-Einstein gases”, Phys. Rev. A (3) 69, No. 2, Article ID 023620, 29 p. (2004; doi:10.1103/PhysRevA.69.023620)] for an arbitrarily high non-linearity term. The solver-package is designed to run on parallel distributed machines and can be applied to problems in one, two, or three spatial dimensions with axial symmetry or in Cartesian coordinates. The time dependent Gross-Pitaevskii equation is solved by means of the fully implicit Crank-Nicolson method, whereas stationary states are obtained with a modified version based on our own constrained Newton method [the first author et al., loc. cit.]. The latter method enables to find the excited state solutions.


35-04 Software, source code, etc. for problems pertaining to partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
82-04 Software, source code, etc. for problems pertaining to statistical mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs


Zbl 1344.81076
Full Text: DOI arXiv


[1] Bangerth, W.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Young, T. D., The library, version 8.2, Arch. Numer. Softw., 3, (2015)
[2] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II—a general purpose object oriented finite element library, ACM Trans. Math. Software, 33, 4, 24/1-24/27, (2007) · Zbl 1365.65248
[3] Yukalov, V. I.; Yukalova, E. P.; Bagnato, V. S., Non-ground-state Bose-Einstein condensates of trapped atoms, Phys. Rev. A, 56, 6, 4845-4854, (1997), URL http://link.aps.org/doi/10.1103/PhysRevA.56.4845
[4] Yukalov, V. I.; Marzlin, K.-P.; Yukalova, E. P., Resonant generation of topological modes in trapped Bose-Einstein gases, Phys. Rev. A, 69, 2, (2004), URL http://link.aps.org/doi/10.1103/PhysRevA.69.023620
[5] Nicolin, A. I.; Carretero-González, R., Nonlinear dynamics of Bose-condensed gases by means of a -Gaussian variational approach, Phys. A, 387, 24, 6032-6044, (2008), URL http://www.sciencedirect.com/science/article/pii/S0378437108005797
[6] Castin, Y.; Dum, R., Bose-Einstein condensates in time dependent traps, Phys. Rev. Lett., 77, 5315-5319, (1996), URL http://link.aps.org/doi/10.1103/PhysRevLett.77.5315
[7] Schlippert, D.; Hartwig, J.; Albers, H.; Richardson, L.; Schubert, L. C.; Roura, A.; Schleich, P.; Ertmer, W. W.; Rasel, M.; E., Quantum test of the universality of free fall, Phys. Rev. Lett., 112, (2014), URL http://link.aps.org/doi/10.1103/PhysRevLett.112.203002
[8] Müntinga, H.; Ahlers, H.; Krutzik, M.; Wenzlawski, A.; Arnold, S.; Becker, D.; Bongs, K.; Dittus, H.; Duncker, H.; Gaaloul, N.; Gherasim, C.; Giese, E.; Grzeschik, C.; Hänsch, T. W.; Hellmig, O.; Herr, W.; Herrmann, S.; Kajari, E.; Kleinert, S.; Lämmerzahl, C.; Lewoczko-Adamczyk, W.; Malcolm, J.; Meyer, N.; Nolte, R.; Peters, A.; Popp, M.; Reichel, J.; Roura, A.; Rudolph, J.; Schiemangk, M.; Schneider, M.; Seidel, S. T.; Sengstock, K.; Tamma, V.; Valenzuela, T.; Vogel, A.; Walser, R.; Wendrich, T.; Windpassinger, P.; Zeller, W.; van Zoest, T.; Ertmer, W.; Schleich, W. P.; Rasel, E. M., Interferometry with Bose-Einstein condensates in microgravity, Phys. Rev. Lett., 110, (2013), URL http://link.aps.org/doi/10.1103/PhysRevLett.110.093602
[9] Herrmann, S.; Göklü, E.; Müntinga, H.; Resch, A.; van Zoest, T.; Dittus, H.; Lämmerzahl, C., Testing fundamental physics with degenerate quantum gases in microgravity, Microgravity Sci. Technol., 22, 4, 529-538, (2010)
[10] Muruganandam, P.; Adhikari, S., Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap, Comput. Phys. Comm., 180, 10, 1888-1912, (2009), URL http://www.sciencedirect.com/science/article/pii/S001046550900126X · Zbl 1353.35002
[11] Vudragović, D.; Vidanović, I.; Balaž, A.; Muruganandam, P.; Adhikari, S. K., C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap, Comput. Phys. Comm., 183, 9, 2021-2025, (2012), URL http://www.sciencedirect.com/science/article/pii/S0010465512001270 · Zbl 1353.35003
[12] Kumar, R. K.; Young-S., L. E.; Vudragović, D.; Balaž, A.; Muruganandam, P.; Adhikari, S. K., Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap, Comput. Phys. Comm., 195, 117-128, (2015), URL http://www.sciencedirect.com/science/article/pii/S0010465515001344 · Zbl 1344.82006
[13] Marojević, Ž; Göklü, E.; Lämmerzahl, C., Energy eigenfunctions of the 1d Gross-Pitaevskii equation, Comput. Phys. Comm., 184, 8, 1920-1930, (2013), URL http://www.sciencedirect.com/science/article/pii/S0010465513001318 · Zbl 1344.81076
[14] Bücker, R.; Berrada, T.; van Frank, S.; Schaff, J.-F.; Schumm, T.; Schmiedmayer, J.; Jäger, G.; Grond, J.; Hohenester, U., Vibrational state inversion of a Bose-Einstein condensate: optimal control and state tomography, J. Phys. B: At. Mol. Opt. Phys., 46, 10, (2013), URL http://stacks.iop.org/0953-4075/46/i=10/a=104012
[15] Bücker, R.; Grond, J.; Manz, S.; Berrada, T.; Betz, T.; Koller, C.; Hohenester, U.; Schumm, T.; Perrin, A.; Schmiedmayer, J., Twin-atom beams, Nat. Phys., 7, 8, 608-611, (2011)
[16] Hohenester, U., Octbec—a Matlab toolbox for optimal quantum control of Bose-Einstein condensates, Comput. Phys. Comm., 185, 1, 194-216, (2014), URL http://www.sciencedirect.com/science/article/pii/S0010465513003172
[17] Abele, H.; Baeßler, S.; Westphal, A., Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between \(1 \sim \operatorname{\mu} \operatorname{m}\) and 10 μm, (Giulini, D.; Kiefer, C.; Lämmerzahl, C., Quantum Gravity, Lecture Notes in Physics, vol. 631, (2003), Springer Berlin, Heidelberg), 355-366
[18] Wallis, H.; Dalibard, J.; Cohen-Tannoudji, C., Trapping atoms in a gravitational cavity, Appl. Phys. B, 54, 5, 407-419, (1992), URL http://link.springer.com/article/10.1007/BF00325387
[19] Kajari, E.; Harshman, N.; Rasel, E.; Stenholm, S.; Süßmann, G.; Schleich, W., Inertial and gravitational mass in quantum mechanics, Appl. Phys. B, 100, 1, 43-60, (2010)
[20] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 3, 487-513, (1971), URL http://www.sciencedirect.com/science/article/pii/0022123671900309 · Zbl 0212.16504
[21] Rabinowitz, P. H., A note on topological degree for potential operators, J. Math. Anal. Appl., 51, 2, 483-492, (1975), URL http://www.sciencedirect.com/science/article/pii/0022247X75901341 · Zbl 0307.47058
[22] Fadell, E. R.; Rabinowitz, P. H., Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal., 26, 1, 48-67, (1977), URL http://www.sciencedirect.com/science/article/pii/0022123677900155 · Zbl 0363.47029
[23] Rabinowitz, P. H., A bifurcation theorem for potential operators, J. Funct. Anal., 25, 4, 412-424, (1977), URL http://www.sciencedirect.com/science/article/pii/0022123677900477 · Zbl 0369.47038
[24] Kielhöfer, H., A bifurcation theorem for potential operators, J. Funct. Anal., 77, 1, 1-8, (1988), URL http://www.sciencedirect.com/science/article/pii/0022123688900730 · Zbl 0643.47057
[25] Novikov, A. N.; Yukalov, V. I.; Bagnato, V. S., Numerical simulation of nonequilibrium states in a trapped Bose-Einstein condensate, J. Phys. Conf. Ser., 594, 1, (2015), URL http://stacks.iop.org/1742-6596/594/i=1/a=012040
[26] Uecker, H.; Wetzel, D.; Rademacher, J. D.M., Pde2path—a Matlab package for continuation and bifurcation in 2d elliptic systems, Numer. Math. Theory Methods Appl., 7, 58-106, (2014) · Zbl 1313.65311
[27] C. Kuehn, Efficient Gluing of Numerical Continuation and a Multiple Solution Method for Elliptic PDEs. arXiv:1406.6900 [nlin, physics:physics].
[28] B. Gough, GNU Scientific Library: Reference Manual, Network Theory, 2009.
[29] Bangerth, W.; Burstedde, C.; Heister, T.; Kronbichler, M., Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software, 38, 2, 14:1-14:28, (2011) · Zbl 1365.65247
[30] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc Web page, (2014) http://www.mcs.anl.gov/petsc.
[31] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc users manual, Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory (2014). URL http://www.mcs.anl.gov/petsc.
[32] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing, (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.