×

zbMATH — the first resource for mathematics

HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics. (English) Zbl 1349.81014
Summary: By the virtues of the Dyson-Schwinger equations, we upgrade the published code HELAC to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub HELAC-Onia. We rewrote the original HELAC to make the new program be able to calculate helicity amplitudes of multi \(P\)-wave quarkonium states production at hadron colliders and electron-positron colliders by including new \(P\)-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, HELAC-Onia is also sufficiently numerical stable in dealing with \(P\)-wave quarkonia (e.g. \(h_{c, b}, \chi_{c, b}\)) and \(P\)-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bodwin, G. T.; Braaten, E.; Lepage, G., Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev., D51, 1125-1171, (1995)
[2] G.T. Bodwin, Theory of Charmonium Production. arXiv:1208.5506.
[3] Artoisenet, P.; Maltoni, F.; Stelzer, T., Automatic generation of quarkonium amplitudes in NRQCD, J. High Energy Phys., 0802, 102, (2008), p. 17, 7 figures
[4] Wang, J.-X., Progress in FDC project, Nucl. Instrum. Meth., A534, 241-245, (2004)
[5] Kanaki, A.; Papadopoulos, C. G., HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306-315, (2000) · Zbl 1031.81507
[6] Papadopoulos, C.; Worek, M., HELAC—a Monte Carlo generator for multi-jet processes
[7] Cafarella, A.; Papadopoulos, C. G.; Worek, M., Helac-phegas: a generator for all parton level processes, Comput. Phys. Commun., 180, 1941-1955, (2009)
[8] Artoisenet, P.; Campbell, J. M.; Lansberg, J.; Maltoni, F.; Tramontano, F., \(\Upsilon\) production at fermilab tevatron and LHC energies, Phys. Rev. Lett., 101, 152001, (2008)
[9] Dyson, F., The \(S\) matrix in quantum electrodynamics, Phys. Rev., 75, 1736-1755, (1949) · Zbl 0033.14201
[10] Schwinger, J. S., On the green’s functions of quantized fields, 1, Proc. Natl. Acad. Sci., 37, 452-455, (1951)
[11] Schwinger, J. S., On the green’s functions of quantized fields, 2, Proc. Natl. Acad. Sci., 37, 455-459, (1951)
[12] Berends, F. A.; Giele, W. T., Recursive calculations for processes with \(n\) gluons, Nuclear Phys., B306, 759, (1988)
[13] Caravaglios, F.; Moretti, M., An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B358, 332-338, (1995)
[14] ’t Hooft, G., A planar diagram theory for strong interactions, Nucl. Phys., B72, 461, (1974)
[15] Kanaki, A.; Papadopoulos, C. G., HELAC-PHEGAS: automatic computation of helicity amplitudes and cross-sections
[16] Maltoni, F.; Paul, K.; Stelzer, T.; Willenbrock, S., Color flow decomposition of QCD amplitudes, Phys. Rev., D67, 014026, (2003)
[17] Petrelli, A.; Cacciari, M.; Greco, M.; Maltoni, F.; Mangano, M. L., NLO production and decay of quarkonium, Nucl. Phys., B514, 245-309, (1998)
[18] Guberina, B.; Kuhn, J. H.; Peccei, R. D.; Ruckl, R., Rare decays of the Z0, Nucl. Phys., B 174, 317, (1980)
[19] Berger, E. L.; Jones, D. L., Inelastic photoproduction of J/psi and upsilon by gluons, Phys. Rev., D23, 1521-1530, (1981)
[20] Ma, Y.-Q.; Wang, K.; Chao, K.-T., \(J / \psi(\psi^\prime)\) production at the tevatron and LHC at \(O(\alpha_s^4 v^4)\) in nonrelativistic QCD, Phys. Rev. Lett., 106, 042002, (2011)
[21] Butenschoen, M.; Kniehl, B. A., Reconciling \(J / \psi\) production at HERA, RHIC, tevatron, and LHC with NRQCD factorization at next-to-leading order, Phys. Rev. Lett., 106, 022003, (2011)
[22] Butenschoen, M.; Kniehl, B. A., J/psi polarization at tevatron and LHC: nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett., 108, 172002, (2012)
[23] Chao, K.-T.; Ma, Y.-Q.; Shao, H.-S.; Wang, K.; Zhang, Y.-J., \(J / \psi\) polarization at hadron colliders in nonrelativistic QCD, Phys. Rev. Lett., 108, 242004, (2012)
[24] Gong, B.; Wan, L.-P.; Wang, J.-X.; Zhang, H.-F., Polarization for prompt J/psi, psi(2s) production at the tevatron and LHC
[25] Butenschoen, M.; Kniehl, B. A., Complete next-to-leading-order corrections to J/psi photoproduction in nonrelativistic quantum chromodynamics, Phys. Rev. Lett., 104, 072001, (2010)
[26] Butenschoen, M.; Kniehl, B. A., Probing nonrelativistic QCD factorization in polarized J/\(\psi\) photoproduction at next-to-leading order
[27] Chang, C.-H.; Driouichi, C.; Eerola, P.; Wu, X. G., BCVEGPY: an event generator for hadronic production of the \(B_c\) meson, Comput. Phys. Commun., 159, 192-224, (2004)
[28] Chang, C.-H.; Wang, J.-X.; Wu, X.-G., BCVEGPY2.0: A upgrade version of the generator BCVEGPY with an addendum about hadroproduction of the \(P\)-wave B(c) states, Comput. Phys. Commun., 174, 241-251, (2006)
[29] Berezhnoy, A.; Kiselev, V.; Likhoded, A., Nonabelian nature of asymmetry for the B(c) meson production in gluon photon interaction, Phys. Atom. Nucl., 61, 252-259, (1998)
[30] Pumplin, J.; Stump, D.; Huston, J.; Lai, H.; Nadolsky, P. M., New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys., 0207, 012, (2002)
[31] Brambilla, N.; Eidelman, S.; Heltsley, B.; Vogt, R.; Bodwin, G., Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J., C71, 1534, (2011)
[32] Liu, K.-Y.; He, Z.-G.; Chao, K.-T., Inclusive charmonium production via double \(c \overline{c}\) in \(e^+ e^-\) annihilation, Phys. Rev., D69, 094027, (2004)
[33] Braaten, E.; Lee, J., Exclusive double charmonium production from \(e + e -\) annihilation into a virtual photon, Phys. Rev., D67, 054007, (2003)
[34] Bodwin, G. T.; Lee, J.; Braaten, E., Exclusive double charmonium production from \(e + e -\) annihilation into two virtual photons, Phys. Rev., D67, 054023, (2003)
[35] Li, R.; Zhang, Y.-J.; Chao, K.-T., Pair production of heavy quarkonium and B(c)(*) mesons at hadron colliders, Phys. Rev., D80, 014020, (2009)
[36] Artoisenet, P.; Lansberg, J.; Maltoni, F., Hadroproduction of \(J / \psi\) and \(\upsilon\) in association with a heavy-quark pair, Phys. Lett., B653, 60-66, (2007), p. 13, 5 figures
[37] Shao, H.-S.; Chao, K.-T., Spin correlations in polarizations of \(P\)-wave charmonia \(\chi_{c J}\) and impact on \(J / \psi\) polarization
[38] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, Polarizations of \(\chi_{c 1}\) and \(\chi_{c 2}\) inclusive production at the LHC. XXXX.XXXX.
[39] H.-S. Shao, K.-T. Chao, Polarized \(\chi_c\) production in association with a charm quark pair at the LHC. XXXX.XXXX.
[40] Mangano, M. L.; Moretti, M.; Piccinini, F.; Treccani, M., Matching matrix elements and shower evolution for top-quark production in hadronic collisions, J. High Energy Phys., 0701, 013, (2007)
[41] Alwall, J.; Hoche, S.; Krauss, F.; Lavesson, N.; Lonnblad, L., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J., C53, 473-500, (2008)
[42] Papadopoulos, C. G., PHEGAS: a phase space generator for automatic cross-section computation, Comput. Phys. Commun., 137, 247-254, (2001) · Zbl 0984.65005
[43] Kleiss, R.; Stirling, W.; Ellis, S., A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun., 40, 359, (1986)
[44] Lepage, G., A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978), Revised version · Zbl 0377.65010
[45] Boos, E.; Dobbs, M.; Giele, W.; Hinchliffe, I.; Huston, J., Generic user process interface for event generators
[46] Whalley, M.; Bourilkov, D.; Group, R., The LES houches accord PDFs (LHAPDF) and LHAGLUE
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.