×

Block-structured adaptive mesh refinement algorithms for Vlasov simulation. (English) Zbl 1349.76339

Summary: Direct discretization of continuum kinetic equations, like the Vlasov equation, are under-utilized because the distribution function generally exists in a high-dimensional (\(>3D\)) space and computational cost increases geometrically with dimension. We propose to use high-order finite-volume techniques with block-structured adaptive mesh refinement (AMR) to reduce the computational cost. The primary complication comes from a solution state comprised of variables of different dimensions. We develop the algorithms required to extend standard single-dimension block structured AMR to the multi-dimension case. Specifically, algorithms for reduction and injection operations that transfer data between mesh hierarchies of different dimensions are explained in detail. In addition, modifications to the basic AMR algorithm that enable the use of high-order spatial and temporal discretizations are discussed. Preliminary results for a standard \(1D+1V\) Vlasov-Poisson test problem are presented. Results indicate that there is potential for significant savings for some classes of Vlasov problems.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics

Software:

Vador; APDEC; SAMRAI; GYSELA
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Lindl, J. D.; Amendt, P.; Berger, R. L.; Glendinning, S. G.; Glenzer, S. H.; Haan, S. W.; Kauffman, R. L.; Landen, O. L.; Suter, L. J., The physics basis for ignition using indirect drive targets on the NIF, Phys. Plasmas, 11, 2, 339-491, (2003)
[2] Frieman, E. A.; Chen, L., Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids, 25, 3, 502-508, (1982) · Zbl 0506.76133
[3] Hahm, T. S., Nonlinear gyrokinetic equations for tokamak microturbulence, Phys. Fluids, 31, 9, 2670-2673, (1988) · Zbl 0649.76067
[4] Dimits, A. M.; LoDestro, L. L.; Dubin, D. H.E., Gyroaveraged equations for both gyrokinetic and drift-kinetic regimes, Phys. Fluids B - Plasma, 4, 1, 274-277, (1992)
[5] Tang, W. M.; Chan, V. S., Advances and challenges in computational plasma science, Plasma Phys. Contr. F., 47, R1-R34, (2005)
[6] Weibel, E. S., Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Phys. Rev. Lett., 2, 83-84, (1959)
[7] Sagdeev, R. Z., Cooperative phenomena and shock waves in collisionless plasmas, Rev. Plasma Phys., 4, 23, (1966)
[8] Tidman, D. A.; Krall, N. A., Shock waves in collisionless plasmas, (1971), Wiley-Interscience New York
[9] P. Colella, An algorithmic and software framework for applied partial differential equations (APDEC): a DOE SciDAC integrated software infrastructure center, May 2003, <http://davis.lbl.gov/APDEC/old/accelerator/index.html>.
[10] Frénod, E.; Watbled, F., The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation, Elect. J. Differ. Equ., 2002, 6, 1-20, (2002) · Zbl 0996.82058
[11] Shoucri, M.; Knorr, G., Numerical integration of the Vlasov equation, J. Comput. Phys., 14, 1, 84-92, (1974) · Zbl 0275.65029
[12] Cheng, C. Z.; Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 3, 330-351, (1976)
[13] Klimas, A. J., A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions, J. Comput. Phys., 68, 1, 202-226, (1987) · Zbl 0613.76130
[14] Bertrand, P.; Ghizzo, A.; Johnston, T. W.; Shoucri, M.; Fijalkow, E.; Feix, M. R., A nonperiodic euler – vlasov code for the numerical simulation of laser-plasma beat wave acceleration and Raman scattering, Phys. Fluids B - Plasma, 2, 5, 1028-1037, (1990)
[15] Bégué, M. L.; Ghizzo, A.; Bertrand, P., Two-dimensional Vlasov simulation of Raman scattering and plasma beatwave acceleration on parallel computers, J. Comput. Phys., 151, 2, 458-478, (1999) · Zbl 0956.76068
[16] Fijalkow, E., A numerical solution to the Vlasov equation, Comput. Phys. Commun., 116, 2-3, 319-328, (1999) · Zbl 1019.76035
[17] Nakamura, T.; Yabe, T., Cubic interpolated propagation scheme for solving the hyper-dimensional vlasov – poisson equation in phase space, Comput. Phys. Commun., 120, 122-154, (1999) · Zbl 1001.82003
[18] Filbet, F.; Sonnendrücker, E.; Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172, 166-187, (2001) · Zbl 0998.65138
[19] Nakamura, T.; Tanaka, R.; Yabe, T.; Takizawa, K., Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, J. Comput. Phys., 174, 171-207, (2001) · Zbl 0995.65094
[20] Arber, T. D.; Vann, R. G.L., A critical comparison of Eulerian-grid-based Vlasov solvers, J. Comput. Phys., 180, 339-357, (2002) · Zbl 1001.82105
[21] Besse, N.; Sonnendrücker, E., Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comput. Phys., 191, 341-376, (2003) · Zbl 1030.82011
[22] Brunetti, M.; Grandgirard, V.; Sauter, O.; Vaclavik, J.; Villard, L., A semi-Lagrangian code for nonlinear global simulations of electrostatic drift-kinetic ITG modes, Comput. Phys. Commun., 163, 1-21, (2004) · Zbl 1196.78004
[23] Gutnic, M.; Haefele, M.; Paun, I.; Sonnendrücker, E., Vlasov simulations on an adaptive phase space mesh, Comput. Phys. Commun., 164, 214-219, (2004) · Zbl 1196.76098
[24] S. Brunner, E. Valeo, Simulations of stimulated Raman scattering in single laser hot spots, Tech. Rep., Princton Plasma Physics Laboratory, Princeton, NJ, 2005.
[25] Haefele, M.; Latu, G.; Gutnic, M., A parallel Vlasov solver using wavelet based adaptive mesh refinement, (Proceedings of the 2005 International Conference on Parallel Processing Workshops, (2005), IEEE)
[26] Klimas, A. J.; Farrell, W. M., A splitting algorithm for Vlasov simulation with filamentation filtering, J. Comput. Phys., 110, 150-163, (1994) · Zbl 0790.76064
[27] Watanabe, T.-H.; Sugamma, H.; Sato, T., A nondissipative simulation method for the drift kinetic equation, J. Phys. Soc. Jpn., 70, 12, 3565-3576, (2001)
[28] Filbet, F.; Sonnendrücker, E., Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150, 247-266, (2003) · Zbl 1196.82108
[29] Pohn, E.; Shoucri, M.; Kamelander, G., Eulerian Vlasov codes, Comput. Phys. Commun., 166, 81-93, (2005) · Zbl 1196.82113
[30] Sircombe, N. J.; Arber, T. D., VALIS: a split-conservative scheme for the relativistic 2D vlasov – maxwell system, J. Comput. Phys., 228, 13, 4773-4788, (2009) · Zbl 1175.82059
[31] Crouseilles, N.; Mehrenberger, M.; Sonnendrücker, E., Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229, 1927-1953, (2010) · Zbl 1303.76103
[32] Banks, J. W.; Berger, R. L.; Brunner, S.; Cohen, B. I.; Hittinger, J. A.F., Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss, Phys. Plasmas, 18, 5, 052102, (2011)
[33] Strozzi, D. J.; Williams, E. A.; Rose, H. A.; Hinkel, D. E.; Langdon, A. B.; Banks, J. W., Threshold for electron trapping nonlinearity in Langmuir waves, Physics of Plasmas, 19, 11, 112306, (2012)
[34] Birdsall, C. K.; Langdon, A. B., Plasma physics via computer simulation, The Adam Hilger Series on Plasma Physics, (1991), Adam Hilger New York
[35] Vay, J.-L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D. P., Mesh refinement for particle-in-cell plasma simulations: applications to and benefits for heavy ion fusion, Laser Part. Bemas, 20, 569-575, (2002)
[36] Vay, J.-L., An extended FDTD scheme for the wave equation: application to multiscale electromagnetic simulation, J. Comput. Phys., 167, 72-98, (2001) · Zbl 1116.78342
[37] Colella, P.; Dorr, M. R.; Hittinger, J. A.F.; McCorquodale, P.; Martin, D. F., High-order, finite-volume methods on locally-structured grids, (Pogorelov, N. V.; Audit, E.; Colella, P.; Zank, G. P., Numerical Modeling of Space Plasma Flows: Astronum 2008, Astronomical Society of the Pacific Conference Series, vol. 406, (2009), Astronomical Society of the Pacific San Francisco), 207-216
[38] Colella, P.; Dorr, M. R.; Hittinger, J. A.F.; Martin, D. F., High-order, finite-volume methods in mapped coordinates, J. Comput. Phys., 230, 8, 2952-2976, (2011) · Zbl 1218.65119
[39] Banks, J. W.; Hittinger, J. A.F., A new class of nonlinear finite-volume methods for Vlasov simulation, IEEE T. Plasma Sci., 38, 9, 2198-2207, (2010)
[40] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep. NASA-CR-97-206253, NASA Langley Research Center, Nov. 1997.
[41] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys., 207, 542-567, (2005) · Zbl 1072.65114
[42] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512, (1984) · Zbl 0536.65071
[43] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 1, 64-84, (1989) · Zbl 0665.76070
[44] Hornung, R. D.; Kohn, R.; Scott, Managing application complexity in the SAMRAI object-oriented framework, Concur. Comput. Pract. Ex., 14, 5, 347-368, (2002) · Zbl 1008.68527
[45] Dorr, M.; Garaizar, F. X.; Hittinger, J. A.F., Simulation of laser plasma filamentation using adaptive mesh refinement, J. Comput. Phys., 177, 233-263, (2002) · Zbl 1045.76024
[46] McCorquodale, P.; Colella, P., A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids, Commun. Appl. Math. Comput. Sci., 6, 1, 1-25, (2011) · Zbl 1252.65163
[47] Barad, M.; Colella, P., A fourth-order accurate local refinement method for poisson’s equation, J. Comput. Phys., 209, 1-18, (2007) · Zbl 1073.65126
[48] Ray, J.; Kennedy, C. A.; Lefantzi, S.; Najm, H. N., Using high-order methods on adaptively refined block-structured meshes: derivatives, interpolants, and filters, SIAM J. Sci. Comput., 29, 1, 139-181, (2007) · Zbl 1133.65068
[49] McCormick, S. F.; Thomas, J., The fast adaptive composite grid (FAC) method for elliptic equations, Math. Comput., 46, 174, 439-456, (1986) · Zbl 0594.65078
[50] Holub, A., Hollub on patterns: learning design patterns by looking at code, (2004), Apress
[51] Krall, N. A.; Trivelpiece, A. W., Principles of plasma physics, (1973), McGraw-Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.