zbMATH — the first resource for mathematics

Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation. (English) Zbl 1349.65428
Summary: Studying numerically the steady state of a nuclear core reactor is expensive, in terms of memory storage and computational time. In order to address both requirements, one can use a domain decomposition method, implemented on a parallel computer. We present here such a method for the mixed neutron diffusion equations, discretized with Raviart-Thomas-Nédélec finite elements. This method is based on the Schwarz iterative algorithm with Robin interface conditions to handle communications. We analyse this method from the continuous point of view to the discrete point of view, and we give some numerical results in a realistic highly heterogeneous 3D configuration.computations are carried out with the MINOS solver of the APOLLO\(^{\circledR}\) neutronics code.

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
APOLLO3; MINOS; parafish
Full Text: DOI
[1] Barrault, M.; Lathuilière, B.; Ramet, P.; Roman, J., Efficient parallel resolution of the simplified transport equations in mixed-dual formulation, J. Comput. Phys., 230, 2004-2020, (2011) · Zbl 1217.82127
[2] Baudron, A.-M.; Lautard, J.-J., MINOS: a simplified \(P_N\) solver for core calculations, Nucl. Sci. Eng., 155, 250-263, (2007)
[3] Baudron, A.-M.; Lautard, J.-J., \(\mathit{SP}_N\) core calculations in the APOLLO3 system, (Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), (2011), Latin American Section (LAS)/American Nuclear Society (ANS))
[4] Ben Belgacem, F.; Bernardi, C.; Costabel, M.; Dauge, M., Un résultat de densité pour LES équations de Maxwell, C. R. Acad. Sci. Paris Ser. I, 324, 731-736, (1997) · Zbl 0880.35115
[5] Ben Belgacem, F.; Bernardi, C.; Rapetti, F., Numerical analysis of a model for an axisymmetric guide for electromagnetic waves. part I: the Fourier analysis, Math. Methods Appl. Sci., 28, 2007-2029, (2005) · Zbl 1125.35099
[6] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag · Zbl 0788.73002
[7] Bussac, J.; Reuss, P., Traité de neutronique, (1985), Hermann
[8] Cossa, G.; Giusti, V.; Montagnini, B., A boundary element-response matrix method for criticality diffusion problems in \(\mathit{xyz}\) geometry, Ann. Nucl. Energy, 37, 953-973, (2010)
[9] Coulomb, F., Domain decomposition and mixed finite elements for the neutron diffusion equation, (Chan, T. F.; etal., Second International Symposium on Domain Decomposition Methods for Partial Differential Equations, (1989), SIAM), 295-313
[10] Coulomb, F.; Fedon-Magnaud, C., Mixed and mixed hybrid elements for the diffusion equation, Nucl. Sci. Eng., 100, 3, 218-225, (1988)
[11] Duderstadt, J. J.; Hamilton, L. J., Nuclear reactor analysis, (1976), John Wiley & Sons Inc.
[12] Ern, A.; Guermond, J.-L., Theory and practice of finite elements, (2004), Springer-Verlag
[13] Gander, M., Optimized Schwarz methods, SIAM J. Numer. Anal., 44, 2, 699-731, (2006) · Zbl 1117.65165
[14] Golfier, H.; Lenain, R.; Lautard, J.-J.; Fougeras, Ph.; Magat, Ph.; Martinolli, E.; Duteillet, Y., APOLLO3: a common project of CEA, AREVA and EDF for the development of a new deterministic multi-purpose code for core physics analysis, (International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics (M&C 2009), (2009), American Nuclear Society (ANS))
[15] Grisvard, P., Elliptic problems in nonsmooth domains, (1985), Pitman · Zbl 0695.35060
[16] Grisvard, P., Singularities in boundary value problems, RMA, vol. 22, (1992), Masson · Zbl 0766.35001
[17] P. Guérin, Méthodes de décomposition de domaine pour la formulation mixte duale du problème critique de la diffusion des neutrons, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (In French), 2007.
[18] Jamelot, E.; Baudron, A.-M.; Lautard, J.-J., Domain decomposition for the \(\mathit{SP}_N\) solver MINOS, Transp. Theory Statist. Phys., 41, 495-512, (2012) · Zbl 1273.82081
[19] Jamelot, E.; Dubois, J.; Lautard, J.-J.; Baudron, A.-M.; Calvin, C., High performance \(3 D\) neutron transport on petascale and hybrid architectures within APOLLO3 code, (International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), (2011), Latin American Section (LAS)/American Nuclear Society (ANS))
[20] Japhet, C.; Nataf, F.; Rogier, F., The optimized order 2 method: application to convection diffusion problems, Future Gener. Comput. Syst., 18, 1, 18-30, (2001) · Zbl 1050.65124
[21] Krebs, J.; Laigle, M.-C.; Lenain, R.; Mathonnière, G.; Nicolas, A., Calculational methods for PWR, (Specialist Meeting on Advanced Calculational Methods for Power Reactors, (1990), International Atomic Energy Agency Cadarache, France)
[22] Krein, [22] M. G.; Rutman, M. A., Am. Math. Soc. Translation, 10, 199-325, (1962)
[23] B. Lathuilière, Méthodes de décomposition de domaine pour les équations du transport simplifié en neutronique, Ph.D. Thesis, Université de Bordeaux I (In French), 2010.
[24] Lions, P.-L., On the Schwarz alternating method I, (Glowinski, R.; etal., First International Symposium on Domain Decomposition Methods for Partial Differential equations, (1988), SIAM), 1-42 · Zbl 0658.65090
[25] Lions, P.-L., On the Schwarz alternating method III: a variant for nonoverlapping subdomains, (Chan, T. F.; etal., Third International Symposium Domain Decomposition Methods for Partial Differential equations, (1990), SIAM), 202-223 · Zbl 0704.65090
[26] Nakata, H.; Martin, W. R., The finite element matrix method, Nucl. Sci. Eng., 85, 289-305, (1983)
[27] Nataf, F.; Nier, F., Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains, Numer. Math., 75, 357-377, (1997) · Zbl 0873.65108
[28] Nataf, F.; Xiang, H.; Dolean, V., A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps, C. R. Acad. Sci. Paris Ser. I, 348, 1163-1167, (2010) · Zbl 1206.35092
[29] Nédélec, J.-C., A new family of mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 50, 57-81, (1986) · Zbl 0625.65107
[30] Pomraning, G. J., Asymptotic and variational derivations of the simplified \(P_N\) equations, Ann. Nucl. Energy, 20, 9, 623-637, (1993)
[31] Quarteroni, A.; Valli, A., Domain decomposition methods for partial differential equations, (1999), Oxford Science Publications · Zbl 0931.65118
[32] Rathkopf, J. A.; Martin, W. R., The finite response matrix method for the solution of the neutron transport equation, Prog. Nucl. Energy, 18, 1/2, 237-250, (1986)
[33] Raviart, P.-A.; Thomas, J.-M., A mixed finite element method for second order elliptic problems, (Mathematical aspects of finite element methods, (1977), Springer), pp. 292-315
[34] Roberts, J. E.; Thomas, J.-M., Mixed and hybrid methods, (Ciarlet, P. G.; Lions, J.-L., Handbook of Numerical Analysis, vol. II, (1991), North Holland), pp. 523-629
[35] D. Schneider, Eléments finis mixtes duaux pour la résolution numérique de l’équation de la diffusion neutronique en géométrie hexagonale, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (In French), 2000.
[36] Schwarz, H. A., Uber einige abbildungsaufgaben, Ges. Math Abh., 11, 65-83, (1869)
[37] Van Criekingen, S., Domain decomposition \(P_N\) solutions to the 3D transport benchmark over a range in parameter space, (Advances in Reactor Physics Linking Research, Industry, and Education (Physor 2012), (2012), American Nuclear Society (ANS))
[38] Van Criekingen, S.; Nataf, F.; Havé, P., PARAFISH: a parallel FE-\(P_N\) neutron transport solver based on domain decomposition, Ann. Nucl. Energy, 38, 1, 145-150, (2011)
[39] Zaslavsky, L. Y., An adaptative algebraic multigrid for multigroup neutron diffusion reactor core calculations, Appl. Math. Comput., 53, 13-26, (1993)
[40] Zaslavsky, L. Y., An adaptative algebraic multigrid for reactor criticality calculations, SIAM J. Sci. Comput., 16, 4, 840-847, (1995) · Zbl 0831.65039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.