×

zbMATH — the first resource for mathematics

A diffuse interface model with immiscibility preservation. (English) Zbl 1349.76395
Summary: A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical-bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall.comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
Software:
AUSM; SPHEREPACK; VTF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blake, J. R.; Gibson, D. C., Cavitation bubbles near boundaries, Annu. Rev. Fluid Mech., 19, 99-123, (1987)
[2] Best, J. P., The formation of toroidal bubbles upon the collapse of transient cavities, J. Fluid Mech., 251, 79-107, (1993) · Zbl 0784.76011
[3] Zhang, S. G.; Duncan, J. H.; Chahine, G. L., The final stage of the collapse of a cavitation bubble near a rigid wall, J. Fluid Mech., 257, 147-181, (1993) · Zbl 0794.76013
[4] Boulton-Stone, J. M.; Blake, J. R., Gas-bubbles bursting at a free-surface, J. Fluid Mech., 254, 437-466, (1993) · Zbl 0780.76011
[5] Blake, J. R.; Hooton, M. C.; Robinson, P. B.; Tong, R. P., Collapsing cavities, toroidal bubbles and jet impact, Philos. Trans. R. Soc. Lond. A, 355, 1724, 537-550, (1997) · Zbl 0893.76009
[6] Zhang, Y. L.; Yeo, K. S.; Khoo, B. C.; Wang, C., 3D jet impact and toroidal bubbles, J. Comput. Phys., 166, 2, 336-360, (2001) · Zbl 1030.76040
[7] Brujan, E. A.; Keen, G. S.; Vogel, A.; Blake, J. R., The final stage of the collapse of a cavitation bubble close to a rigid boundary, Phys. Fluids, 14, 1, 85-92, (2002) · Zbl 1184.76072
[8] Fong, S. W.; Klaseboer, E.; Turangan, C. K.; Khoo, B. C.; Hung, K. C., Numerical analysis of a gas bubble near bio-materials in an ultrasound field, Ultrasound Med. Biol., 32, 6, 925-942, (2006)
[9] Lee, M.; Klaseboer, E.; Khoo, B. C., On the boundary integral method for the rebounding bubble, J. Fluid Mech., 570, 407-429, (2007) · Zbl 1111.76059
[10] Brennen, C. E., Cavitation and bubble dynamics, (1995), Oxford University Press New York
[11] Lauterborn, W.; Kurz, T., Physics of bubble oscillations, Rep. Progr. Phys., 73, 10, 106501, (2010)
[12] Luo, H.; Baum, J. D.; Löhner, R., On the computation of multi-material flows using ALE formulation, J. Comput. Phys., 194, 1, 304-328, (2004) · Zbl 1136.76401
[13] Ball, G. J.; Howell, B. P.; Leighton, T. G.; Schofield, M. J., Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation, Shock Waves, 10, 4, 265-276, (2000) · Zbl 0980.76090
[14] Turangan, C. K.; Jamaluddin, A. R.; Ball, G. J.; Leighton, T. G., Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water, J. Fluid Mech., 598, 1-25, (2008) · Zbl 1151.76603
[15] Chern, I. L.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S., Front tracking for gas-dynamics, J. Comput. Phys., 62, 1, 83-110, (1986) · Zbl 0577.76068
[16] Cocchi, J. P.; Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J. Comput. Phys., 137, 2, 265-298, (1997) · Zbl 0934.76055
[17] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K. M.; Zeng, Y. N.; Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 3, 703-727, (1998) · Zbl 0912.65075
[18] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 2, 708-759, (2001) · Zbl 1047.76574
[19] Osher, S.; Fedkiw, R. P., Level set methods: an overview and some recent results, J. Comput. Phys., 169, 2, 463-502, (2001) · Zbl 0988.65093
[20] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas-dynamics, J. Comput. Phys., 100, 2, 209-228, (1992) · Zbl 0758.76044
[21] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492, (1999) · Zbl 0957.76052
[22] Fedkiw, R. P.; Aslam, T.; Xu, S. J., The ghost fluid method for deflagration and detonation discontinuities, J. Comput. Phys., 154, 2, 393-427, (1999) · Zbl 0955.76071
[23] Fedkiw, R. P., Coupling an eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175, 1, 200-224, (2002) · Zbl 1039.76050
[24] Liu, T. G.; Khoo, B. C.; Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190, 2, 651-681, (2003) · Zbl 1076.76592
[25] Liu, T. G.; Khoo, B. C.; Wang, C. W., The ghost fluid method for compressible gas-water simulation, J. Comput. Phys., 204, 1, 193-221, (2005) · Zbl 1190.76160
[26] Hu, X. Y.; Khoo, B. C.; Adams, N. A.; Huang, F. L., A conservative interface method for compressible flows, J. Comput. Phys., 219, 2, 553-578, (2006) · Zbl 1102.76038
[27] Nourgaliev, R. R.; Dinh, T. N.; Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213, 2, 500-529, (2006) · Zbl 1136.76396
[28] Hu, X. Y.; Adams, N. A.; Iaccarino, G., On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, J. Comput. Phys., 228, 17, 6572-6589, (2009) · Zbl 1261.76023
[29] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228, 11, 4012-4037, (2009) · Zbl 1171.76046
[30] Sambasivan, S. K.; UdayKumar, H. S., Sharp interface simulations with local mesh refinement for multi-material dynamics in strongly shocked flows, Comput. & Fluids, 39, 9, 1456-1479, (2010) · Zbl 1245.76111
[31] Lauer, E.; Hu, X. Y.; Hickel, S.; Adams, N. A., Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics, Comput. & Fluids, 69, 1-19, (2012) · Zbl 1365.76231
[32] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 6, 861-889, (1986) · Zbl 0609.76114
[33] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 2, 425-467, (1999) · Zbl 0937.76053
[34] Miller, G. H.; Puckett, E. G., A high-order Godunov method for multiple condensed phases, J. Comput. Phys., 128, 1, 134-164, (1996) · Zbl 0861.65117
[35] Jenny, P.; Muller, B.; Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. Comput. Phys., 132, 1, 91-107, (1997) · Zbl 0879.76059
[36] Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D., A high-resolution Godunov method for compressible multi-material flow on overlapping grids, J. Comput. Phys., 223, 1, 262-297, (2007) · Zbl 1163.76032
[37] Chang, C. H.; Liou, M. S., A robust and accurate approach to computing compressible multiphase flow: stratified flow model and \(\operatorname{AUSM}^+\)-up scheme, J. Comput. Phys., 225, 1, 840-873, (2007) · Zbl 1192.76030
[38] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 10, 3002-3024, (2001) · Zbl 1184.76268
[39] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 2, 577-616, (2002) · Zbl 1169.76407
[40] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 2, 664-698, (2005) · Zbl 1061.76083
[41] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech., 607, 313-350, (2008) · Zbl 1147.76060
[42] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 5, 1678-1712, (2009) · Zbl 1409.76105
[43] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125, 1, 150-160, (1996) · Zbl 0847.76060
[44] Karni, S., Hybrid multifluid algorithms, SIAM J. Sci. Comput., 17, 5, 1019-1039, (1996) · Zbl 0860.76056
[45] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129-163, (1996) · Zbl 0877.76046
[46] Shyue, K. M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 1, 208-242, (1998) · Zbl 0934.76062
[47] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 3, 1115-1145, (1999) · Zbl 0957.76057
[48] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 2, 594-623, (2001) · Zbl 1033.76029
[49] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 2, 715-732, (2006) · Zbl 1189.76351
[50] Shukla, R. K.; Pantano, C.; Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 19, 7411-7439, (2010) · Zbl 1425.76289
[51] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231, 11, 4304-4323, (2012) · Zbl 1426.76428
[52] Kokh, S.; Lagoutière, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 8, 2773-2809, (2010) · Zbl 1302.76129
[53] Keller, J. B.; Miksis, M., Bubble oscillations of large-amplitude, J. Acoust. Soc. Am., 68, 2, 628-633, (1980) · Zbl 0456.76087
[54] Prosperetti, A.; Lezzi, A., Bubble dynamics in a compressible liquid. part 1. first-order theory, J. Fluid Mech., 168, 457-478, (1986) · Zbl 0597.76106
[55] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J. Comput. Phys., 210, 1, 225-246, (2005) · Zbl 1154.76368
[56] Adams, J. C.; Swarztrauber, P. N., SPHEREPACK 3.0: A model development facility, Mon. Weather Rev., 127, 1872-1878, (1999)
[57] Menikoff, R.; Plohr, B. J., The Riemann problem for fluid-flow of real materials, Rev. Mod. Phys., 61, 1, 75-130, (1989) · Zbl 1129.35439
[58] Olsson, E.; Kreiss, G.; Zahedi, S., A conservative level set method for two phase flow II, J. Comput. Phys., 225, 1, 785-807, (2007) · Zbl 1256.76052
[59] Deiterding, R.; Radovitzky, R.; Mauch, S. P.; Noels, L.; Cummings, J. C.; Meiron, D. I., A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading, Eng. Comput., 22, 3-4, 325-347, (2006)
[60] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial-differential equations, J. Comput. Phys., 53, 3, 484-512, (1984) · Zbl 0536.65071
[61] Leveque, R. J., Finite volume methods for hyperbolic problems, (2002), Cambridge University Press New York · Zbl 1010.65040
[62] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (2006), Springer Berlin
[63] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math. Comp., 67, 73-85, (1988) · Zbl 0897.65058
[64] Saurel, R.; Le Metayer, O.; Massoni, J.; Gavrilyuk, S., Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 3, 209-232, (2007) · Zbl 1195.76245
[65] Pares, C., Numerical methods for nonconservative hyperbolic systems: A theoretical framework, SIAM J. Numer. Anal., 44, 1, 300-321, (2006) · Zbl 1130.65089
[66] Castro, M. J.; LeFloch, P. G.; Munoz-Ruiz, M. L.; Pares, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 17, 8107-8129, (2008) · Zbl 1176.76084
[67] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 229, 8, 2759-2763, (2010) · Zbl 1188.65134
[68] Munoz-Ruiz, M. L.; Pares, C., On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws, J. Sci. Comput., 48, 1-3, 274-295, (2011) · Zbl 1230.65102
[69] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34, (1994) · Zbl 0811.76053
[70] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 6, 1553-1570, (1997) · Zbl 0992.65088
[71] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 1, 200-212, (1994) · Zbl 0811.65076
[72] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228, (1996) · Zbl 0877.65065
[73] Shu, C. W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 1, 82-126, (2009) · Zbl 1160.65330
[74] Titarev, V. A.; Toro, E. F., Finite-volume WENO schemes for three-dimensional conservation laws, J. Comput. Phys., 201, 1, 238-260, (2004) · Zbl 1059.65078
[75] Pantano, C.; Deiterding, R.; Hill, D. J.; Pullin, D. I., A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows, J. Comput. Phys., 221, 1, 63-87, (2007) · Zbl 1125.76034
[76] Freund, J. B.; Shukla, R. K.; Evan, A. P., Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy, J. Acoust. Soc. Am., 126, 5, 2746-2756, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.