Dimension and structure of typical compact sets, continua and curves. (English) Zbl 0666.28005

In the sense of Baire categories most compact subsets of a complete metric space \(<X,\rho >\) have Hausdorff and lower entropy dimension 0. If the compact sets having lower entropy dimension \(\geq \delta (>0)\) are dense then most compact sets have upper entropy dimension \(\geq \delta\). Most compact sets C in X have the following property: For any \(x\in C\) and \(0<\epsilon \leq 1\) there are arbitrarily small \(\sigma >0\) such that the “annulus” \(\{y\in X:\quad \epsilon \sigma \leq \rho (x,y)\leq \sigma \}\) is disjoint from C. Thus most compact sets have porosity 1 at any of their points. Similar results on “thinness” in various senses hold for continua, curves and graphs of real continuous functions on [0,1]. [See also A. J. Ostaszewski, Mathematika 21, 116-127 (1974; Zbl 0305.54040), J. A. Wieacker, Math. Ann. 282, 637-644 (1988; Zbl 0636.52004), and the survey of T. Zamfirescu, Rend. Semin. Mat., Torino 43, 67-88 (1985; Zbl 0601.52004).]
Reviewer: P.M.Gruber


28A78 Hausdorff and packing measures
26A21 Classification of real functions; Baire classification of sets and functions
26B15 Integration of real functions of several variables: length, area, volume
28D20 Entropy and other invariants
54C50 Topology of special sets defined by functions
54F45 Dimension theory in general topology
Full Text: DOI EuDML


[1] Besicovitch, A. S., Ursell, H. D.: Sets of fractional dimensions (IV); On dimensional numbers of some continuous curves. J. London Math. Soc.12, 18-25 (1937). · Zbl 0016.01703
[2] Dolzhenko, E. P.: Boundary properties of arbitrary functions. Math. USSR Izv.1, 1-12 (1967). · Zbl 0181.08102
[3] Falconer, K. J.: The Geometry of Fractal Sets. Cambridge: Univ. Press. 1985. · Zbl 0587.28004
[4] Golab, S.: Sur quelques points de la théorie de la longueur. Ann. Soc. Polon. Math.7, 227-241 (1929). · JFM 55.0153.01
[5] Gruber, P. M.: In most cases approximation is irregular. Rend. Sem. Mat. Univ. Politecn. Torino41, 19-33 (1983). · Zbl 0562.41030
[6] Gruber, P. M.: Results of Baire category type in convexity. Ann. New York Acad. Sci.440, 163-169 (1985). · Zbl 0571.52007
[7] Gruber, P. M., Zamfirescu, T.: Generic properties of compact starshaped sets. Proc. Amer. Math. Soc. In print. · Zbl 0683.52008
[8] Hawkes, J.: Hausdorff measure, entropy and the independence of small sets. Proc. London Math. Soc.8, 700-724 (1974). · Zbl 0315.28001
[9] Kahane, J.-P.: Sur la dimension des intersections. In:J. A. Barroso (ed.): Aspect of Mathematics and its Applications, pp. 419-430. Amsterdam: North-Holland. 1986.
[10] Kahane, J.-P., Salem, R.: Ensembles Parfaits et Séries Trigonométriques. Paris: Hermann. 1963.
[11] Kolmogorov, A. N., Tihomirov, V. M.: ?-entropy and ?-capacity of sets in functional spaces. Uspekhi Mat. Nauk14, 3-86 (1959); Amer. Math. Soc. Transl.17, 277-364 (1961). · Zbl 0090.33503
[12] Michael, E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc.71, 152-182 (1951). · Zbl 0043.37902
[13] Ostaszewski, A. J.: Families of compact sets and their universals. Matematika21, 116-127 (1974). · Zbl 0305.54040
[14] Oxtoby, J. C.: Measure and Category. New York-Heidelberg-Berlin: Springer. 1971. · Zbl 0217.09201
[15] Rogers, C. A.: Hausdorff Measures. Cambridge: Univ. Press. 1970.
[16] Taylor, S. J.: The Hausdorff ?-dimensional measure of Brownian paths inn-space. Proc. Cambridge Philos. Soc.48, 31-39 (1953). · Zbl 0050.05803
[17] Wieacker, J. A.: The convex hull of a typical compact set. Math. Ann.282, 637-644 (1988). · Zbl 0636.52004
[18] Zamfirescu, T.: Using Baire categories in geometry. Rend. Sem. Math. Univ. Politecn. Torino43, 67-88 (1985). · Zbl 0601.52004
[19] Zamfirescu, T.: How many sets are porous? Proc. Amer. Math. Soc.100, 383-387 (1987). · Zbl 0625.54036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.