Johnson, Roy A.; Wajch, Eliza; Wilczyński, Wladyslaw Hereditary \(\kappa\)-separability and the hereditary \(\kappa\)-Lindelöf property in function spaces. (English) Zbl 0666.54003 Commentat. Math. Univ. Carol. 30, No. 1, 75-80 (1989). This paper is concerned with the smallest linear subspace \(L_ p(X)\) of \(C_ pC_ p(X)\) containing the Tychonoff space X. It is proved that \(L_ p(X)\) is hereditarily \(\kappa\)-Lindelöf (hereditarily \(\kappa\)- separable, resp.) if and only if \(X^{\omega}\) is hereditarily \(\kappa\)- Lindelöf (hereditarily \(\kappa\)-separable, resp.). Moreover, it is shown that a certain cardinal function of \(L_ p(X)\) called the weak pseudonet weight of \(L_ p(X)\) equals the net weight of X. MSC: 54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets) 54C35 Function spaces in general topology Keywords:pointwise convergence; hereditary \(\kappa\)-separability; hereditary \(\kappa\)-Lindelöf property; weak pseudonet weight × Cite Format Result Cite Review PDF Full Text: EuDML