zbMATH — the first resource for mathematics

Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects. (English) Zbl 1349.76253
Summary: A stable volume integral equation formulation based on equivalent volumetric currents is presented for modeling electromagnetic scattering of highly inhomogeneous dielectric objects. The proposed formulation is numerically solved by means of Galerkin method of moments on uniform grids, allowing for acceleration of the matrix-vector products associated with the iterative solver with the help of FFT. In addition, the pertinent volume-volume Galerkin inner products are reduced to purely surface-surface integrals with smoother kernels, allowing for highly accurate and fast computation by readily available sophisticated cubatures. Numerical results demonstrate the convergence properties of the algorithm for scatterers with high dielectric contrast. In addition, we describe a road-map for Magnetic Resonance-specific volume integral equations fast solvers based on the proposed algorithm.

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Borup, D. T.; Gandhi, O. P., Fast-Fourier transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies, IEEE Trans. Microw. Theory Tech., 32, 3, 355-360, (1984)
[2] Cátedra, M. F.; Gago, E.; Nuño, L., A numerical scheme to obtain the RCS of three dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform, IEEE Trans. Antennas Propag., 37, 5, 528-537, (1989)
[3] Zwamborn, P.; van den Berg, P. M., The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems, IEEE Trans. Microw. Theory Tech., 40, 9, 1757-1766, (1992)
[4] Shen, C. Y.; Glover, K. J.; Sancer, M. I.; Varvatsis, A. D., The discrete Fourier transform method of solving differential-integral equations in scattering theory, IEEE Trans. Antennas Propag., 37, 8, 1032-1041, (1989) · Zbl 1058.78568
[5] Gan, H.; Chew, W. C., A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems, J. Electromagn. Waves Appl., 9, 10, 1339-1357, (1995)
[6] Jin, J. M.; Chen, J.; Chew, W. C.; Gan, H.; Magin, R. L.; Dimbylow, P. J., Computation of electromagnetic fields for high-frequency magnetic resonance imaging applications, Phys. Med. Biol., 41, 12, 2719-2738, (1996)
[7] Wei, F.; Yilmaz, A. E., A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems, (AP-S International Symposium (Digest), (2011), IEEE Antennas and Propagation Society), 3158-3161
[8] Geyik, C. S.; Wei, F.; Massey, J. W.; Yilmaz, A. E., FDTD vs. AIM for bioelectromagnetic analysis, (AP-S International Symposium (Digest), (2011), IEEE Antennas and Propagation Society), 1-2
[9] van Beurden, M. C.; van Eijndhoven, S. J.L., Gaps in present discretization schemes for domain integral equations, (International Conference on Electromagnetics in Advanced Applications, ICEAA’07, (2007)), 673-675
[10] van Beurden, M. C.; van Eijndhoven, S. J.L., Well-posedness of domain integral equations for a dielectric object in homogeneous background, J. Eng. Math., 62, 3, 289-302, (2008) · Zbl 1158.78003
[11] Markkanen, J.; Ylä-Oijala, P.; Sihvola, A., Discretization of volume integral equation formulations for extremely anisotropic materials, IEEE Trans. Antennas Propag., 60, 11, 5195-5202, (2012) · Zbl 1370.78128
[12] Chew, W. C.; Jin, J. M.; Michielssen, J. M.; Song, J. M., Fast and efficient algorithms in computational electromagnetics, (2001), Artech House Boston, MA
[13] Sun, L. E.; Chew, W. C., A novel formulation of the volume integral equation for electromagnetic scattering, Waves Random Complex Media, 19, 1, 162-180, (2009) · Zbl 1267.78031
[14] Schaubert, D. H.; Wilton, D. R.; Glisson, A. W., A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies, IEEE Trans. Antennas Propag., 32, 1, 77-85, (1984)
[15] Polimeridis, A. G., Direct evaluation method in computational electromagnetics (DEMCEM) package, (2011)
[16] Saad, Y., Iterative methods for sparse linear systems, (2003), Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 1002.65042
[17] Budko, N. V.; Samokhin, A. B., Spectrum of the volume integral operator of electromagnetic scattering, SIAM J. Sci. Comput., 28, 2, 682-700, (2006) · Zbl 1121.78004
[18] Zouros, G. P.; Budko, N. V., Transverse electric scattering on inhomogeneous objects: spectrum of integral operator and preconditioning, SIAM J. Sci. Comput., 34, 3, 226-246, (2012) · Zbl 1246.78017
[19] Peng, S.; Wang, C., Precorrected-FFT method on graphics processing units, IEEE Trans. Antennas Propag., 61, 4, 2099-2107, (2013) · Zbl 1372.65367
[20] Morgan, R. B., GMRES with deflated restarting, SIAM J. Sci. Comput., 24, 20-37, (2002) · Zbl 1018.65042
[21] Reid, M. T.H.; Rodriguez, A. W.; White, J.; Johnson, S. G., Efficient computation of Casimir interactions between arbitrary 3d objects, Phys. Rev. Lett., 103, 040401, (2009)
[23] Christ, A., The virtual family - development of anatomical CAD models of two adults and two children for dosimetric simulations, Phys. Med. Biol., 55, 2, 23-38, (2010)
[24] Speag, Semcad x
[25] Polimeridis, A. G.; Yioultsis, T. V., On the direct evaluation of weakly singular integrals in Galerkin mixed potential integral equation formulations, IEEE Trans. Antennas Propag., 56, 9, 3011-3019, (2008) · Zbl 1369.78904
[26] Polimeridis, A. G.; Mosig, J. R., Complete semi-analytical treatment of weakly singular integrals on planar triangles via the direct evaluation method, Int. J. Numer. Methods Eng., 83, 1625-1650, (2010) · Zbl 1202.65178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.