×

Multi-level multi-domain algorithm implementation for two-dimensional multiscale particle in cell simulations. (English) Zbl 1349.86002

Summary: There are a number of modeling challenges posed by space weather simulations. Most of them arise from the multiscale and multiphysics aspects of the problem. The multiple scales dramatically increase the requirements, in terms of computational resources, because of the need of performing large scale simulations with the proper small-scales resolution. Lately, several suggestions have been made to overcome this difficulty by using various refinement methods which consist in splitting the domain into regions of different resolutions separated by well defined interfaces. The multiphysics issues are generally treated in a similar way: interfaces separate the regions where different equations are solved. This paper presents an innovative approach based on the coexistence of several levels of description, which differ by their resolutions or, potentially, by their physics. Instead of interacting through interfaces, these levels are entirely simulated and are interlocked over the complete extension of the overlap area. This scheme has been applied to a parallelized, two-dimensional, Implicit Moment Method Particle in Cell code in order to investigate its multiscale description capabilities. Simulations of magnetic reconnection and plasma expansion in vacuum are presented and possible implementation options for this scheme on very large systems are also discussed.

MSC:

86-08 Computational methods for problems pertaining to geophysics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82D10 Statistical mechanics of plasmas

Software:

DEMOCRITUS; Parsek2D
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chulaki, A.; Bakshi, S. S.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Mendoza, A. M.; Mullinix, R.; Patel, K. D.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y., Community coordinated modeling center (ccmc): providing access to space weather models and research support tools, (AGU Fall Meeting Abstracts, (2011)), A1999
[2] Young, S. L.; Quinn, J.; Johnston, J. C., Space weather forecasting laboratory, a baseline space weather forecast capability, (AGU Fall Meeting Abstracts, (2010)), B6
[3] Tóth, G.; Sokolov, I.; Gombosi, T.; Chesney, D.; Clauer, C.; De Zeeuw, D.; Hansen, K.; Kane, K.; Manchester, W.; Oehmke, R., Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, (2005)
[4] Steiner, O.; Knölker, M.; Schüssler, M., Dynamic interaction of convection with magnetic flux sheets: first results of a new MHD code, (Rutten, R. J.; Schrijver, C. J., Solar Surface Magnetism, (1993)), 441-470
[5] Friedel, H.; Grauer, R.; Marliani, C., Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamic flows, J. Comput. Phys., 134, 190-198, (1997) · Zbl 0879.76079
[6] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; de Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309, (1999) · Zbl 0952.76045
[7] Ziegler, U., A three-dimensional Cartesian adaptive mesh code for compressible magnetohydrodynamics, Comput. Phys. Commun., 116, 65-77, (1999)
[8] Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J., Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation, Comput. Phys. Commun., 153, 317-339, (2003) · Zbl 1196.76055
[9] Fujimoto, K.; Sydora, R. D., Electromagnetic particle-in-cell simulations on magnetic reconnection with adaptive mesh refinement, Comput. Phys. Commun., 178, 915-923, (2008)
[10] Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D. P.; McCorquodale, P.; Serafini, D. B., Implementations of mesh refinement schemes for particle-in-cell plasma simulations, Comput. Phys. Commun., 164, 297-305, (2004)
[11] Brackbill, J. U., An adaptive grid with directional control, J. Comput. Phys., 108, 38-50, (1993) · Zbl 0832.65132
[12] Chacón, L.; Delzanno, G. L.; Finn, J. M., Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution, J. Comput. Phys., 230, 87-103, (2011) · Zbl 1205.65260
[13] Lapenta, G., Democritus: an adaptive particle in cell (pic) code for object-plasma interactions, J. Comput. Phys., 230, 4679-4695, (2011) · Zbl 1416.76245
[14] Birdsall, C. K.; Langdon, A. B., Plasma physics via computer simulation, (2004), Taylor & Francis
[15] Hockney, R.; Eastwood, J., Computer simulation using particles, (1988), Taylor & Francis · Zbl 0662.76002
[16] Lapenta, G., Particle rezoning for multidimensional kinetic particle-in-cell simulations, J. Comput. Phys., 181, 317-337, (2002) · Zbl 1178.76294
[17] Fujimoto, K.; Machida, S., Electromagnetic full particle code with adaptive mesh refinement technique: application to the current sheet evolution, J. Comput. Phys., 214, 550-566, (2006) · Zbl 1103.78006
[18] Colella, P.; Norgaard, P., Controlling self-force errors at refinement boundaries for amr-pic, J. Comput. Phys., 229, 947-957, (2010) · Zbl 1185.82054
[19] Innocenti, M.; Lapenta, G.; Markidis, S.; Beck, A.; Vapirev, A., A multi level multi domain method for particle in cell plasma simulations, J. Comput. Phys., 238, 115-140, (2013)
[20] Brackbill, J.; Forslund, D., An implicit method for electromagnetic plasma simulation in two dimensions, J. Comput. Phys., 46, 271-308, (1982) · Zbl 0489.76127
[21] Lapenta, G.; Brackbill, J.; Ricci, P., Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas, Phys. Plasmas, 13, 055904, (2006)
[22] Vu, H.; Brackbill, J., Celest1d: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation, Comput. Phys. Commun., 69, 253-276, (1992)
[23] Biskamp, D., Magnetic reconnection in plasmas, vol. 3, (2005), Cambridge University Press
[24] Daughton, W.; Scudder, J.; Karimabadi, H., Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions, Phys. Plasmas, 13, 072101, (2006)
[25] Lapenta, G., Particle in cell methods - with application to simulations in space weather, (2013)
[26] Ricci, P.; Brackbill, J.; Daughton, W.; Lapenta, G., Collisionless magnetic reconnection in the presence of a guide field, Phys. Plasmas, 11, 4102-4114, (2004)
[27] Harris, E., On a plasma sheath separating regions of oppositely directed magnetic field, Il Nuovo Cimento (1955-1965), 23, 115-121, (1962) · Zbl 0102.24002
[28] Drake, J.; Shay, M., The fundamentals of collisionless reconnection, (Reconnection of Magnetic Fields, Magnetohydrodynamic and Collisionless Theory and Observations, (2007)), 87-99
[29] Drake, J. F.; Shay, M. A.; Swisdak, M., The Hall fields and fast magnetic reconnection, Phys. Plasmas, 15, 042306, (2008)
[30] (Birn, J.; Priest, E. R., Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations, (2007), Cambridge University Press)
[31] Fujimoto, K., Time evolution of the electron diffusion region and the reconnection rate in fully kinetic and large system, Phys. Plasmas, 13, 072904, (2006)
[32] Karimabadi, H.; Daughton, W.; Scudder, J., Multi-scale structure of the electron diffusion region, Geophys. Res. Lett., 34, L13104, (2007)
[33] Le, A.; Egedal, J.; Fox, W.; Katz, N.; Vrublevskis, A.; Daughton, W.; Drake, J., Equations of state in collisionless magnetic reconnection, Phys. Plasmas, 17, 055703, (2010)
[34] Fu, H. S.; Khotyaintsev, Y. V.; André, M.; Vaivads, A., Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 38, L16104, (2011)
[35] Chen, L.-J.; Daughton, W. S.; Lefebvre, B.; Torbert, R. B., The inversion layer of electric fields and electron phase-space-hole structure during two-dimensional collisionless magnetic reconnection, Phys. Plasmas, 18, 012904, (2011)
[36] Murakami, M.; Basko, M. M., Self-similar plasma expansion of a limited mass into vacuum, J. Phys. IV, 133, 329-334, (2006)
[37] Beck, A.; Pantellini, F., Spherical expansion of a collisionless plasma into vacuum: self-similar solution and ab initio simulations, Plasma Phys. Control. Fusion, 51, 015004, (2009)
[38] S. Markidis, E. Camporeale, D. Burgess, Rizwan-Uddin, G. Lapenta, Parsek2D: an implicit parallel particle-in-cell code, in: N.V. Pogorelov, E. Audit, P. Colella, G.P. Zank (Eds.), Numerical Modeling of Space Plasma Flows: ASTRONUM-2008, in: Astronomical Society of the Pacific Conference Series, vol. 406, p. 237.
[39] Pritchett, P. L., Particle-in-cell simulations of magnetosphere electrodynamics, IEEE Trans. Plasma Sci., 28, 1976-1990, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.