zbMATH — the first resource for mathematics

PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs. (English) Zbl 1349.82002
Summary: We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques we developed to obtain high performance on state-of-the-art hardware.comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16{\(\times\)} improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors.

82-04 Software, source code, etc. for problems pertaining to statistical mechanics
PDF BibTeX Cite
Full Text: DOI
[1] Halgren, T. A.; Damm, W., Polarizable force fields, Curr. Opin. Struct. Biol., 11, 236-242, (2001)
[2] Davis, J. E.; Warren, G. L.; Patel, S., Revised charge equilibration potential for liquid alkanes, J. Phys. Chem. B, 12, 8298-8310, (2008)
[3] Brenner, D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458-9471, (1990)
[4] Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Sinnott, S. B., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14, 783-802, (2002)
[5] Stuart, S. J.; Tutein, A. B.; Harrison, J. A., A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, (2000)
[6] van Duin, A. C.T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., Reaxff: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396-9409, (2001)
[7] Nielson, K. D.; van Duin, A. C.T.; Oxgaard, J.; Deng, W.-Q.; Goddard, W. A., Development of the reaxff reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes, J. Phys. Chem. A, 109, 493-499, (2005)
[8] Chenoweth, K.; Cheung, S.; van Duin, A. C.T.; Goddard, W. A.; Kober, E. M., Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the reaxff reactive force field, J. Am. Chem. Soc., 127, 7192-7202, (2005)
[9] Buehler, M. J., Hierarchical chemo-nanomechanics of proteins: entropic elasticity, protein unfolding and molecular fracture, J. Mech. Mater. Struct., 2, 6, 1019-1057, (2007)
[10] Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R. H.; Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; Eastwood, M. P.; Gagliardo, J.; Grossman, J. P.; Ho, C. R.; Ierardi, D. J.; Kolossvry, I.; Klepeis, J. L.; Layman, T.; McLeavey, C.; Moraes, M. A.; Mueller, R.; Priest, E. C.; Shan, Y.; Spengler, J.; Theobald, M.; Towles, B.; Wang, S. C., Anton: a special-purpose machine for molecular dynamics simulation, (ISCA, (2007))
[11] Aktulga, H. M.; Grama, A. Y.; Plimpton, S.; Thompson, A., A fast ILU preconditioning-based solver for the charge equilibration problem, (CSRI Summer Proceedings 2009, (2010)), 50
[12] Aktulga, H.; Pandit, S.; van Duin, A.; Grama, A., Reactive molecular dynamics: numerical methods and algorithmic techniques, SIAM J. Sci. Comput., 34, 1, C1-C23, (2012) · Zbl 1387.65128
[13] Aktulga, H. M.; Fogarty, J. C.; Pandit, S. A.; Grama, A. Y., Parallel reactive molecular dynamics: numerical methods and algorithmic techniques, Parallel Comput., 38, 4-5, 245-259, (2012)
[14] Aktulga, H. M., Algorithmic and numerical techniques for atomistic modeling, (2010), Purdue University West Lafayette, IN, USA, AAI3444466
[15] Shan, T.-R.; Wixom, R. R.; Mattsson, A. E.; Thompson, A. P., Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate, J. Phys. Chem., 928-936, (2013)
[16] van Duin, A. C.T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu, X.; Goddard, W. A., Reaxff_{sio} reactive force field for silicon and silicon oxide systems, J. Phys. Chem. A, 107, 3803-3811, (2003)
[17] Luitjens, D. J., CUDA memory hierarchy
[18] NVIDIA, NVIDIA white paper on Fermi architecture
[19] NVIDIA, CUDA C best practices guide
[20] Wihtehead, N.; Fit-Florea, A., Precision and performance: floating point and IEEE 754 compliance for NVIDIA gpus
[21] Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19, (1995) · Zbl 0830.65120
[22] NVIDIA, NVIDIA developer forum
[23] NVIDIA, CUDA tutorial
[24] Nakano, A., Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics, Comput. Phys. Commun., 104, 59-69, (1997)
[25] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, (1986) · Zbl 0599.65018
[26] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM · Zbl 1002.65042
[27] Bell, N.; Garland, M., Efficient sparse matrix-vector multiplication on CUDA
[28] NVIDIA, NVIDIA C2075 specifications
[29] Thompson, A.; Cho, H., LAMMPS/reaxff potential, (April 2010)
[30] Park, Y.; Aktulga, H. M.; Grama, A.; Strachan, A., Strain relaxation in si/ge/si nanoscale bars from molecular dynamics simulations, J. Appl. Phys., 106, 3, (2009), 034304-034304
[31] Fogarty, J. C.; Aktulga, H. M.; Grama, A. Y.; Van Duin, A. C.; Pandit, S. A., A reactive molecular dynamics simulation of the silica-water interface, J. Chem. Phys., 132, (2010), 174704
[32] Aktulga, H. M.; Plimpton, S. J.; Thompson, A., LAMMPS/User-Reax/C
[33] Nakano, A.; Kalia, R. K.; Nomura, K.; Sharma, A.; Vashishta, P.; Shimojo, F.; van Duin, A. C.T.; Goddard, W. A.; Biswas, R.; Srivastava, D.; Yang, L. H., De novo ultrascale atomistic simulations on high-end, Int. J. High Perform. Comput. Appl., 22, 1, 113-128, (2008)
[34] Zheng, M.; Li, X.; Guo, L., Algorithms of GPU-enabled reactive force field (reaxff) molecular dynamics, J. Mol. Graph. Model., 41, 1-11, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.