×

zbMATH — the first resource for mathematics

A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid. (English) Zbl 1349.92170
Summary: In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A “buffer zone” methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed.
MSC:
92E20 Classical flows, reactions, etc. in chemistry
92-08 Computational methods for problems pertaining to biology
80A32 Chemically reacting flows
76V05 Reaction effects in flows
Software:
VODE; AMROC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hawkes, E. R.; Chen, J. H., Direct numerical simulation of hydrogen-enriched Lean premixed methane-air flames, Combust. Flame, 138, 242-258, (2004)
[2] Gruber, A.; Sankaran, R.; Hawkes, E.; Chen, J., Turbulent flame-wall interaction: a direct numerical simulation study, J. Fluid Mech., 658, 5-32, (2010) · Zbl 1205.76288
[3] Najm, H.; Knio, O., Modeling low Mach number reacting flow with detailed chemistry and transport, J. Sci. Comput., 25, 263-287, (2005) · Zbl 1203.80025
[4] Day, M.; Bell, J., Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Model., 4, 535-556, (2000) · Zbl 0970.76065
[5] Kedia, K. S.; Ghoniem, A. F., Mechanism of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate, Combust. Flame, 159, 1055-1069, (2012)
[6] Kedia, K. S.; Altay, H. M.; Ghoniem, A. F., Impact of flame-wall interaction on flame dynamics and transfer function characteristics, Proc. Combust. Inst., 33, 1113-1120, (2011)
[7] Knio, O. M.; Najm, H. N.; Wyckoff, P. S., A semi-implicit numerical scheme for reacting flow, II. stiff, operator-split formulation, J. Comput. Phys., 154, 428-467, (1999) · Zbl 0958.76061
[8] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512, (1984) · Zbl 0536.65071
[9] Berger, M.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84, (1989) · Zbl 0665.76070
[10] Bell, J.; Day, M.; Grcar, J.; Lijewski, M.; Driscoll, J.; Filatyev, S., Numerical simulation of a laboratory-scale turbulent slot flame, Proc. Combust. Inst., 31, 1299-1307, (2007)
[11] Bell, J.; Day, M.; Lijewski, M., Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner, Proc. Combust. Inst., 34, 1173-1182, (2012)
[12] Safta, C.; Ray, J.; Najm, H. N., A high-order low-Mach number amr construction for chemically reacting flows, J. Comput. Phys., 229, 9299-9322, (2010) · Zbl 1222.80024
[13] Duchaine, F.; Boudy, F.; Durox, D.; Poinsot, T., Sensitivity analysis of transfer functions of laminar flames, Combust. Flame, 158, 2384-2394, (2011)
[14] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252, (1977) · Zbl 0403.76100
[15] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049
[16] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 35-60, (2000) · Zbl 0972.76073
[17] Kreiss, H.-O.; Petersson, N. A.; Yström, J., Difference approximations for the second order wave equation, SIAM J. Numer. Anal., 40, 1940-1967, (2002) · Zbl 1033.65072
[18] Pember, R. B.; Bell, J. B.; Colella, P.; Curtchfield, W. Y.; Welcome, M. L., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. Comput. Phys., 120, 278-304, (1995) · Zbl 0842.76056
[19] Johansen, H.; Colella, P., A cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147, 60-85, (1998) · Zbl 0923.65079
[20] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492, (1999) · Zbl 0957.76052
[21] Deiterding, R., Detonation structure simulation with amroc, (High Performance Computing and Communications, (2005), Springer), 916-927
[22] Breugem, W. P.; Boersma, B. J., Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach, Phys. Fluids, 17, 025103, (2005) · Zbl 1187.76067
[23] Iaccarino, G.; Moreau, S., Natural and forced conjugate heat transfer in complex geometries on Cartesian adapted grids, Trans. Am. Soc. Mech. Eng., 128, 838-846, (2006)
[24] Kang, S.; Iaccarino, G.; Ham, F., Dns of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method, J. Comput. Phys., 228, 3189-3208, (2009) · Zbl 1419.80009
[25] Paravento, F.; Pourquie, M. J.; Boersma, B. J., An immersed boundary method for complex flow and heat transfer, Flow Turbul. Combust., 80, 187-206, (2008) · Zbl 1257.76063
[26] Henshaw, W. D.; Chand, K. K., A composite grid solver for conjugate heat transfer in fluid-structure systems, J. Comput. Phys., 228, 3708-3741, (2009) · Zbl 1396.80006
[27] Brown, P. N.; Byrne, G. D.; Hindmarsh, A. C., Vode: a variable-coefficient ODE solver, SIAM J. Sci. Comput., 10, 1039-1051, (1989) · Zbl 0677.65075
[28] Ray, J.; Kennedy, C. A.; Lefantzi, S.; Najm, H. N., Using high-order methods on adaptively refined block-structured meshes: derivatives, interpolations, and filters, SIAM J. Sci. Comput., 29, 139-181, (2007) · Zbl 1133.65068
[29] Roache, P. J., Verification of codes and calculations, AIAA J., 36, 696-702, (1998)
[30] Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W., High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213, 1-30, (2006) · Zbl 1089.65117
[31] Taneda, S.; Honji, H., Unsteady flow past a flat plate normal to the direction of motion, J. Phys. Soc. Jpn., 30, 262, (1971)
[32] Dennis, S.; Qiang, W.; Coutanceau, M.; Launay, J., Viscous flow normal to a flat plate at moderate Reynolds numbers, J. Fluid Mech., 248, 605-635, (1993)
[33] Yoshida, Y.; Nomura, T., A transient solution method for the finite element incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 5, 873-890, (1985) · Zbl 0619.76027
[34] Laval, H.; Quartapelle, L., A fractional-step Taylor-Galerkin method for unsteady incompressible flows, Int. J. Numer. Methods Fluids, 11, 501-513, (1990) · Zbl 0711.76019
[35] Tamaddon-Jahromi, H.; Townsend, P.; Webster, M., Unsteady viscous flow past a flat plate orthogonal to the flow, Comput. Fluids, 23, 433-446, (1994) · Zbl 0804.76057
[36] Koumoutsakos, P.; Shiels, D., Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, J. Fluid Mech., 328, 177-227, (1996) · Zbl 0890.76061
[37] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308-323, (1985) · Zbl 0582.76038
[38] Weinan, E.; Liu, J.-G., Projection method. I: convergence and numerical boundary layers, SIAM J. Numer. Anal., 32, 1017-1057, (1995) · Zbl 0842.76052
[39] Suzuki, H.; Inoue, Y.; Nishimura, T.; Fukutani, K.; Suzuki, K., Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex), Int. J. Heat Fluid Flow, 14, 2-9, (1993)
[40] Davis, F.; Moore, F.; Purtell, P., A numerical-experimental study of confined flow around rectangular cylinders, Phys. Fluids, 27, 1, (1984)
[41] Westbrook, C. K.; Dryer, F. L., Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., 27, 31-43, (1981)
[42] Smooke, M.; Puri, I.; Seshadri, K., A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air, (Symposium (International) on Combustion, vol. 21, (1986), Elsevier), 1783-1792
[43] Kedia, K. S., Development of a multi-scale projection method with immersed boundaries for chemically reactive flows and its application to examine flame stabilization and blow-off mechanisms, (2013), Massachusetts Institute of Technology, Ph.D. thesis
[44] Ray, J.; Armstrong, R.; Safta, C.; Debusschere, B.; Allan, B. A.; Najm, H., Computational frameworks for advanced combustion simulations, (Turbulent Combustion Modeling, (2011), Springer), 409-437 · Zbl 1380.76130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.