×

zbMATH — the first resource for mathematics

Multiscale universal interface: a concurrent framework for coupling heterogeneous solvers. (English) Zbl 1349.76738
Summary: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i. e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers’ own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).

MSC:
76M28 Particle methods and lattice-gas methods
65Y15 Packaged methods for numerical algorithms
76-04 Software, source code, etc. for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Praprotnik, M.; Site, L. D.; Kremer, K., Multiscale simulation of soft matter: from scale bridging to adaptive resolution, Annu. Rev. Phys. Chem., 59, 545-571, (2008)
[2] Mohamed, K.; Mohamad, A., A review of the development of hybrid atomistic-continuum methods for dense fluids, Microfluid. Nanofluid., 8, 3, 283-302, (2010)
[3] Weinan, E., Principles of multiscale modeling, (2011), Cambridge University Press · Zbl 1238.00010
[4] Lions, P.-L., On the Schwarz alternating method. I, (First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, France, (1988)), 1-42 · Zbl 0658.65090
[5] Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 4, 581-613, (1992) · Zbl 0788.65037
[6] Walther, J. H.; Praprotnik, M.; Kotsalis, E. M.; Koumoutsakos, P., Multiscale simulation of water flow past a C540 fullerene, J. Comput. Phys., 231, 7, 2677-2681, (2012) · Zbl 1397.76116
[7] Chen, Z.; Jiang, S.; Gan, Y.; Liu, H.; Sewell, T. D., A particle-based multiscale simulation procedure within the material point method framework, Comput. Part. Mech., 1, 2, 147-158, (2014)
[8] Delgado-Buscalioni, R.; Kremer, K.; Praprotnik, M., Concurrent triple-scale simulation of molecular liquids, J. Chem. Phys., 128, 11, 114110, (2008)
[9] Patronis, A.; Lockerby, D. A., Multiscale simulation of non-isothermal microchannel gas flows, J. Comput. Phys., 270, 532-543, (2014) · Zbl 1349.76726
[10] Allan, B. A.; Armstrong, R. C.; Wolfe, A. P.; Ray, J.; Bernholdt, D. E.; Kohl, J. A., The CCA core specification in a distributed memory SPMD framework, Concurr. Comput.: Pract. Exp., 14, 5, 323-345, (2002) · Zbl 1008.68528
[11] S. Lefantzi, J. Ray, H. Najm, Using the common component architecture to design high performance scientific simulation codes, in: Parallel and Distributed Processing Symposium, 2003. Proceedings. International, April 2003, pp. 10.
[12] McInnes, L.; Allan, B.; Armstrong, R.; Benson, S.; Bernholdt, D.; Dahlgren, T.; Diachin, L.; Krishnan, M.; Kohl, J.; Larson, J.; Lefantzi, S.; Nieplocha, J.; Norris, B.; Parker, S.; Ray, J.; Zhou, S., Parallel PDE-based simulations using the common component architecture, (Bruaset, A.; Tveito, A., Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, vol. 51, (2006), Springer Berlin, Heidelberg), 327-381 · Zbl 1112.68492
[13] Davison de St. Germain, J.; McCorquodale, J.; Parker, S.; Johnson, C., Uintah: a massively parallel problem solving environment, (High-Performance Distributed Computing, 2000. Proceedings. The Ninth International Symposium on, (2000)), 33-41
[14] Parker, S. G., A component-based architecture for parallel multi-physics PDE simulation, Future Gener. Comput. Syst., 22, 1-2, 204-216, (2006)
[15] Berzins, M.; Luitjens, J.; Meng, Q.; Harman, T.; Wight, C. A.; Peterson, J. R., Uintah: a scalable framework for hazard analysis, (Proceedings of the 2010 TeraGrid Conference, TG ’10, (2010), ACM New York, NY, USA), 3:1-3:8
[16] B. Allan, S. Lefantzi, J. Ray, ODEPACK++: refactoring the LSODE Fortran library for use in the CCA high performance component software architecture, in: High-Level Parallel Programming Models and Supportive Environments, 2004. Proceedings. Ninth International Workshop on, April 2004, pp. 109-119.
[17] Hughes, J. F.; Feiner, S. K.; Foley, J. D.; Akeley, K.; McGuire, M.; van Dam, A.; Sklar, D. F., Computer graphics: principles and practice, (2013)
[18] Plimpton, S.; Crozier, P.; Thompson, A., LAMMPS-large-scale atomic/molecular massively parallel simulator, (2007), Sandia National Laboratories
[19] Tang, Y.-H.; Karniadakis, G. E., Accelerating dissipative particle dynamics simulations on GPUs: algorithms, numerics and applications, Comput. Phys. Commun., 185, 11, 2809-2822, (2014)
[20] Li, Z.; Tang, Y.-H.; Lei, H.; Caswell, B.; Karniadakis, G. E., Energy-conserving dissipative particle dynamics with temperature-dependent properties, J. Comput. Phys., 265, 113-127, (2014) · Zbl 1349.76709
[21] Hoogerbrugge, P. J.; Koelman, J. M.V. A., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, 3, 155, (1992)
[22] Español, P.; Warren, P., Statistical mechanics of dissipative particle dynamics, Europhys. Lett., 30, 4, 191, (1995)
[23] Blumm, J.; Lindemann, A., Characterization of the thermophysical properties of molten polymers and liquids using the flash technique, High Temp., High Press., 35, 36, 6, (2007)
[24] Gibert, B.; Mainprice, D., Effect of crystal preferred orientations on the thermal diffusivity of quartz polycrystalline aggregates at high temperature, Tectonophysics, 465, 1, 150-163, (2009)
[25] Bramley, R.; Chiu, K.; Diwan, S.; Gannon, D.; Govindaraju, M.; Mukhi, N.; Temko, B.; Yechuri, M., A component based services architecture for building distributed applications, (High-Performance Distributed Computing, 2000. Proceedings. The Ninth International Symposium on, (2000), IEEE), 51-59
[26] K. Zhang, K. Damevski, V. Venkatachalapathy, S. Parker, SCIRun2: a CCA framework for high performance computing, in: High-Level Parallel Programming Models and Supportive Environments, 2004. Proceedings. Ninth International Workshop on, April 2004, pp. 72-79.
[27] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simmhan, A. Slominski, On building parallel grid applications: component technology and distributed services, in: Challenges of Large Applications in Distributed Environments, 2004. CLADE 2004. Proceedings of the Second International Workshop on, June 2004, pp. 44-51.
[28] S. Li, P. Mulunga, Q. Yang, X. Sun, A common component architecture (CCA) based design and implementation for distributed parallel magnetotellurice forward model, in: Information Management, Innovation Management and Industrial Engineering (ICIII), 2013 6th International Conference on, vol. 3, Nov. 2013, pp. 433-436.
[29] Dadvand, P.; Rossi, R.; Gil, M.; Martorell, X.; Cotela, J.; Juanpere, E.; Idelsohn, S.; Oñate, E., Migration of a generic multi-physics framework to HPC environments, Selected contributions of the 23rd International Conference on Parallel Fluid Dynamics, ParCFD2011, Comput. Fluids, 80, 301-309, (2013) · Zbl 1426.76644
[30] Michopoulos, J.; Tsompanopoulou, P.; Houstis, E.; Rice, J.; Farhat, C.; Lesoinne, M.; Lechenault, F., DDEMA: a data driven environment for multiphysics applications, (Sloot, P.; Abramson, D.; Bogdanov, A.; Gorbachev, Y.; Dongarra, J.; Zomaya, A., Computational Science, ICCS 2003, Lecture Notes in Computer Science, vol. 2660, (2003), Springer Berlin, Heidelberg), 309-318
[31] Sbalzarini, I. F.; Walther, J. H.; Bergdorf, M.; Hieber, S. E.; Kotsalis, E. M.; Koumoutsakos, P., PPM - a highly efficient parallel particle-mesh library for the simulation of continuum systems, J. Comput. Phys., 215, 2, 566-588, (2006) · Zbl 1173.76398
[32] Fedosov, D. A.; Karniadakis, G. E., Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes, J. Comput. Phys., 228, 4, 1157-1171, (2009) · Zbl 1330.76102
[33] Neumann, P.; Harting, J., Massively parallel molecular-continuum simulations with the macro-micro-coupling tool, (Hybrid Particle-Continuum Methods in Computational Materials Physics, vol. 46, (2013)), pp. 211
[34] Neumann, P.; Eckhardt, W.; Bungartz, H.-J., Hybrid molecular-continuum methods: from prototypes to coupling software, Mesoscopic Methods for Engineering and Science, Proceedings of ICMMES-2012, Taipei, Taiwan, 23-27 July 2012, Comput. Math. Appl., 67, 2, 272-281, (2014) · Zbl 1381.76012
[35] L. Grinberg, V. Morozov, D. Fedosov, J. Insley, M. Papka, K. Kumaran, G. Karniadakis, A new computational paradigm in multiscale simulations: application to brain blood flow, in: High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference for, Nov. 2011, pp. 1-12.
[36] Bernaschi, M.; Melchionna, S.; Succi, S.; Fyta, M.; Kaxiras, E.; Sircar, J., MUPHY: a parallel multi physics/scale code for high performance bio-fluidic simulations, Comput. Phys. Commun., 180, 9, 1495-1502, (2009)
[37] Portegies Zwart, S.; McMillan, S.; Harfst, S.; Groen, D.; Fujii, M.; Nualláin, B.Ó.; Glebbeek, E.; Heggie, D.; Lombardi, J.; Hut, P., A multiphysics and multiscale software environment for modeling astrophysical systems, New Astron., 14, 4, 369-378, (2009)
[38] Zwart, S. F.P.; McMillan, S. L.; van Elteren, A.; Pelupessy, F. I.; de Vries, N., Multi-physics simulations using a hierarchical interchangeable software interface, Comput. Phys. Commun., 184, 3, 456-468, (2013)
[39] Humphrey, W.; Dalke, A.; Schulten, K., VMD - visual molecular dynamics, J. Mol. Graph., 14, 33-38, (1996)
[40] Stone, J., An efficient library for parallel ray tracing and animation, (April 1998), Computer Science Department, University of Missouri-Rolla, Master’s thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.