×

zbMATH — the first resource for mathematics

A gyrokinetic continuum code based on the numerical Lie transform (NLT) method. (English) Zbl 1349.82132
Summary: In this work, we report a novel gyrokinetic simulation method named numerical Lie transform (NLT), which depends on a new physical model derived from the I-transform theory. In this model, the perturbed motion of a particle is decoupled from the unperturbed motion. Due to this property, the unperturbed orbit can be computed in advance and saved as numerical tables for real-time computation. A 4D tensor B-spline interpolation module is developed and applied with the semi-Lagrangian scheme to avoid operator splitting. The NLT code is verified by the Rosenbluth-Hinton test and the linear ITG Cyclone test.
MSC:
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Software:
GENE; gs2; GYGLES; GYSELA; nlt
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hinton, F.; Hazeltine, R., Theory of plasma transport in toroidal confinement systems, Rev. Mod. Phys., 48, 2, 239, (1976)
[2] Horton, W., Drift waves and transport, Rev. Mod. Phys., 71, 3, 735, (1999)
[3] Batchelor, D.; Beck, M.; Becoulet, A.; Budny, R.; Chang, C.; Diamond, P.; Dong, J.; Fu, G.; Fukuyama, A.; Hahm, T., Simulation of fusion plasmas: current status and future direction, Plasma Sci. Technol., 9, 3, 312, (2007)
[4] Brizard, A.; Hahm, T., Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79, 2, 421, (2007) · Zbl 1205.76309
[5] Garbet, X.; Idomura, Y.; Villard, L.; Watanabe, T., Gyrokinetic simulations of turbulent transport, Nucl. Fusion, 50, 4, (2010)
[6] Lin, Z.; Tang, W.; Lee, W., Gyrokinetic particle simulation of neoclassical transport, Phys. Plasmas (1994-present), 2, 8, 2975-2988, (1995)
[7] Chen, Y.; Parker, S. E., A \(\delta \operatorname{f}\) particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations, J. Comput. Phys., 189, 2, 463-475, (2003) · Zbl 1032.82509
[8] Fivaz, M.; Brunner, S.; De Ridder, G.; Sauter, O.; Tran, T.; Vaclavik, J.; Villard, L.; Appert, K., Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates, Comput. Phys. Commun., 111, 1, 27-47, (1998) · Zbl 0944.76035
[9] Dorland, W.; Jenko, F.; Kotschenreuther, M.; Rogers, B., Electron temperature gradient turbulence, Phys. Rev. Lett., 85, 26, 5579, (2000)
[10] Candy, J.; Waltz, R., An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys., 186, 2, 545-581, (2003) · Zbl 1072.82554
[11] Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Told, D., The global version of the gyrokinetic turbulence code gene, J. Comput. Phys., 230, 18, 7053-7071, (2011) · Zbl 1408.76592
[12] Grandgirard, V.; Sarazin, Y.; Angelino, P.; Bottino, A.; Crouseilles, N.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Jolliet, S., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fusion, 49, 12B, (2007)
[13] Ye, L.; Guo, W.; Xiao, X.; Wang, S., Numerical simulation of geodesic acoustic modes in a multi-ion system, Phys. Plasmas (1994-present), 20, 7, (2013)
[14] Kwon, J.-M.; Yi, D.; Piao, X.; Kim, P., Development of semi-Lagrangian gyrokinetic code for full-f turbulence simulation in general tokamak geometry, J. Comput. Phys., 283, 518-540, (2015) · Zbl 1351.82004
[15] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517, (1968) · Zbl 0184.38503
[16] Grandgirard, V.; Brunetti, M.; Bertrand, P.; Besse, N.; Garbet, X.; Ghendrih, P.; Manfredi, G.; Sarazin, Y.; Sauter, O.; Sonnendrücker, E., A drift-kinetic semi-Lagrangian 4d code for ion turbulence simulation, J. Comput. Phys., 217, 2, 395-423, (2006) · Zbl 1160.76385
[17] Wang, S., Transport formulation of the gyrokinetic turbulence, Phys. Plasmas (1994-present), 19, 6, (2012)
[18] Wang, S., Kinetic theory of weak turbulence in plasmas, Phys. Rev. E, 87, 6, (2013)
[19] Wang, S., Lie-transform theory of transport in plasma turbulence, Phys. Plasmas (1994-present), 21, 7, (2014)
[20] Xu, Y.; Dai, Z.; Wang, S., Nonlinear gyrokinetic theory based on a new method and computation of the guiding-center orbit in tokamaks, Phys. Plasmas (1994-present), 21, 4, (2014)
[21] Dai, Z.; Xu, Y.; Ye, L.; Xiao, X.; Wang, S., A new continuum approach for nonlinear kinetic simulation and transport analysis, Phys. Plasmas (1994-present), 22, 2, (2015)
[22] Xu, Y.; Xiao, X.; Wang, S., Linear gyrokinetic theory and computation of the gyrocenter motion based on the exact canonical variables for axisymmetric tokamaks, Phys. Plasmas (1994-present), 18, 4, (2011)
[23] White, R. B., The theory of toroidally confined plasmas, (2001), World Scientific · Zbl 0990.76002
[24] Idomura, Y.; Ida, M.; Kano, T.; Aiba, N.; Tokuda, S., Conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation, Comput. Phys. Commun., 179, 6, 391-403, (2008) · Zbl 1197.82110
[25] Xiao, X.; Wang, S., Explicit Runge-Kutta integrator with Hamiltonian correction for long-time simulations of guiding-center orbit in tokamak configurations, Phys. Plasmas (1994-present), 15, 12, 122511, (2008)
[26] Lee, W., Gyrokinetic particle simulation model, J. Comput. Phys., 72, 1, 243-269, (1987) · Zbl 0619.76063
[27] Rosenbluth, M.; Hinton, F., Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks, Phys. Rev. Lett., 80, 4, 724, (1998)
[28] Winsor, N.; Johnson, J. L.; Dawson, J. M., Geodesic acoustic waves in hydromagnetic systems, Phys. Fluids (1958-1988), 11, 11, 2448-2450, (1968)
[29] Sugama, H.; Watanabe, T.-H., Collisionless damping of geodesic acoustic modes, J. Plasma Phys., 72, 06, 825-828, (2006)
[30] Dimits, A.; Bateman, G.; Beer, M.; Cohen, B.; Dorland, W.; Hammett, G.; Kim, C.; Kinsey, J.; Kotschenreuther, M.; Kritz, A., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas (1994-present), 7, 3, 969-983, (2000)
[31] de Boor, C., A practical guide to splines, vol. 27, (2001), Springer · Zbl 0987.65015
[32] Latu, G.; Grandgirard, V.; Abiteboul, J.; Crouseilles, N.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Mehrenberger, M.; Sarazin, Y.; Sonnendrücker, E., Improving conservation properties of a 5d gyrokinetic semi-Lagrangian code, Eur. Phys. J. D, 68, 11, 1-16, (2014)
[33] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods in fluid dynamics, (1988), Springer, Tech. rep. · Zbl 0658.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.