zbMATH — the first resource for mathematics

A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion. (English) Zbl 1349.76651
Summary: A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of up to eight times with respect to an equivalent single-grid method, and by two times with respect to an artificially-stabilized MG method.
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76F99 Turbulence
76V05 Reaction effects in flows
80A25 Combustion
80A32 Chemically reacting flows
Full Text: DOI
[1] Bisetti, F., Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions, Combust. Theory Model., 16, 3, 387-418, (2012) · Zbl 1262.80089
[2] Gear, C. W., Numerical initial value problems in ordinary differential equations, (1971), Prentice Hall PTR · Zbl 1145.65316
[3] Lomax, H.; Pulliam, T. H.; Zingg, D. W., Fundamentals of computational fluid dynamics, (2001), Springer Berlin · Zbl 0970.76002
[4] Bussing, T. R., A finite volume method for the Navier-Stokes equations with finite rate chemistry, (1985), Massachusetts Institute of Technology, PhD thesis
[5] Wu, Z.-N.; Fu, S., Positivity of k-epsilon turbulence models for incompressible flow, Math. Models Methods Appl. Sci., 12, 3, 393-406, (2002) · Zbl 1020.76021
[6] Gerolymos, G. A.; Vallet, I., Implicit computation of three-dimensional compressible Navier-Stokes equations using k-ϵ closure, AIAA J., 34, 7, 1321-1330, (1996) · Zbl 0906.76066
[7] Ilinca, F.; Pelletier, D., Positivity preservation and adaptive solution for the k-ϵ model of turbulence, AIAA J., 36, 44-50, (1998) · Zbl 0904.76029
[8] Sinha, K.; Candler, V. G., Convergence improvement of two-equation turbulence model calculations, (29th AIAA Fluid Dynamics Conference, (1998)), AIAA Paper 98-2649
[9] Scalabrin, L. C., Numerical simulation of weakly ionized hypersonic flow over reentry capsules, (2007), University of Michigan, PhD thesis
[10] Gao, X., A parallel solution-adaptive method for turbulent non-premixed combusting flows, (2008), University of Toronto, PhD thesis
[11] Mor-Yossef, Y.; Levy, Y., Unconditionally positive implicit procedure for two-equation turbulence models: application to k-ω turbulence models, J. Comput. Phys., 220, 1, 88-108, (2006) · Zbl 1158.76330
[12] Mor-Yossef, Y.; Levy, Y., The unconditionally positive-convergent implicit time integration scheme for two-equation turbulence models: revisited, Comput. Fluids, 38, 10, 1984-1994, (2009) · Zbl 1242.76179
[13] Berman, A.; Plemmons, R. J., Nonnegative matrices in the mathematical sciences, (Computer Science and Applied Mathematics, (1979), Academic Press, Inc.) · Zbl 0484.15016
[14] Wasserman, M.; Mor-Yossef, Y.; Yavneh, I.; Greenberg, J. B., A robust implicit multigrid method for RANS equations with two-equation turbulence models, J. Comput. Phys., 229, 16, 5820-5842, (2010) · Zbl 1346.76057
[15] Trottenberg, U.; Oosterlee, C. W.; Schuller, A., Multigrid, (2001), Academic Press
[16] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 138, 333-390, (1977) · Zbl 0373.65054
[17] Thomas, J. L.; Diskin, B.; Brandt, A., Textbook multigrid efficiency for fluid simulations, Annu. Rev. Fluid Mech., 35, 317-340, (2003) · Zbl 1041.76060
[18] Brandt, A., Barriers to achieving textbook multigrid efficiency (TME) in CFD, (1998), Tech. rep. ICASE Interim Report No. 32
[19] Gerolymos, G. A.; Vallet, I., Implicit meanflow-multigrid algorithms for Reynolds stress model computation of 3-D anisotropy-driven and compressible flows, Int. J. Numer. Methods Fluids, 61, 185-219, (2008) · Zbl 1421.76170
[20] Gerolymos, G. A.; Vallet, I., Mean-flow-multigrid for implicit Reynolds-stress-model computations, AIAA J., 43, 9, 1887-1898, (2005)
[21] Swanson, R. C.; Rossow, C. C., An efficient solver for the RANS equations and a one-equation turbulence model, Comput. Fluids, 42, 13-25, (2011) · Zbl 1271.76196
[22] Jespersen, D.; Pulliam, T. H.; Buning, P. G., Recent enhancements to OVERFLOW, (35th AIAA Aerospace Sciences Meeting & Exhibit, (1997)), AIAA Paper 97-0644
[23] Fassbender, J. K., Robust and efficient computation of turbulent flows around civil transport aircraft at flight Reynolds numbers, Aerosp. Sci. Technol., 9, 8, 672-680, (2005) · Zbl 1195.76201
[24] Walsh, P. C.; Pulliam, T., The effect of turbulence model solution on viscous flow problems, (39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, (2001))
[25] Gerlinger, P.; Bruggemann, D., Multigrid convergence acceleration for turbulent supersonic flows, Int. J. Numer. Methods Fluids, 24, 10, 1019-1035, (1997) · Zbl 0889.76063
[26] Gerlinger, P.; Stoll, P.; Bruggemann, D., An implicit multigrid method for the simulation of chemically reacting flows, J. Comput. Phys., 146, 1, 322-345, (1998) · Zbl 0929.76078
[27] Gerlinger, P.; Mobus, H.; Bruggemann, D., An implicit multigrid method for turbulent combustion, J. Comput. Phys., 167, 2, 247-276, (2001) · Zbl 1029.76035
[28] Park, S. H.; Kwon, J. H., Implementation of k-ω turbulence models in an implicit multigrid method, AIAA J., 42, 1348-1357, (2004)
[29] Lin, F. B.; Sotiropoulos, F., Strongly-coupled multigrid method for 3-D incompressible flows using near-wall turbulence closures, J. Fluids Eng., 119, 314, (1997)
[30] Vazquez, M.; Ravachol, M.; Chalot, F.; Mallet, M., The robustness issue on multigrid schemes applied to the Navier-Stokes equations for laminar and turbulent, incompressible and compressible flows, Int. J. Numer. Methods Fluids, 45, 5, 555-579, (2004) · Zbl 1085.76527
[31] Park, T. S., Multigrid method and low-ryenolds-number k-ϵ model for turbulent recirculating flows, Numer. Heat Transf., Part B, Fundam., 36, 4, 433-456, (1999)
[32] Zheng, X.; Liao, C.; Liu, C.; Sung, C. H.; Huang, T. T., Multigrid computation of incompressible flows using two-equation turbulence models: part I - numerical method, J. Fluids Eng., 119, 893-900, (1997)
[33] Gerlinger, P.; Stoll, P.; Bruggemann, D., Robust implicit multigrid method for the simulation of turbulent supersonic mixing, AIAA J., 37, 6, 766-768, (1999)
[34] Gerlinger, P., An evaluation of multigrid methods for the simulation of turbulent combustion, (17th AIAA Computational Fluid Dynamics Conference, (2005), AIAA), AIAA Paper 2005-4869
[35] Wackers, J.; Koren, B., Multigrid solution method for the steady RANS equations, J. Comput. Phys., 226, 25, (2007) · Zbl 1121.76042
[36] Yan, J.; Thiele, F.; Xue, L., A modified full multigrid algorithm for the Navier-Stokes equations, Comput. Fluids, 36, 2, 445-454, (2007) · Zbl 1177.76250
[37] Edwards, J.; Royt, C., Preconditioned multigrid methods for two-dimensional combustion calculations at all speeds, AIAA J., 36, 2, 185-192, (1998) · Zbl 0908.76062
[38] Sheffer, S. G.; Jameson, A.; Martinelli, L., An efficient multigrid algorithm for compressible reactive flows, J. Comput. Phys., 144, 484-516, (1998) · Zbl 0935.76053
[39] Slomski, J.; Anderson, J.; Gorski, J., Effectiveness of multigrid in accelerating convergence of multidimensional flows in chemical nonequilibrium, (AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, (1990), AIAA)
[40] Edwards, J. R., An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows, J. Comput. Phys., 123, 1, 84-95, (1996) · Zbl 0839.76052
[41] Kim, S.-s.; Kim, C.; Rho, O.-H., Multigrid algorithm for computing hypersonic, chemically reacting flows, J. Spacecr. Rockets, 38, 865-874, (2001)
[42] Bellucci, V.; Bruno, C., Incompressible flows with combustion simulated by a preconditioning method using multigrid acceleration and MUSCL reconstruction, Int. J. Numer. Methods Fluids, 36, 6, 619-637, (2001) · Zbl 1051.76037
[43] Hoffmann, K. A.; Chiang, S. T.; Siddiqui, S.; Papadakis, M., Fundamental equations of fluid mechanics, (1996), Engineering Education System
[44] Mcbride, B. J.; Gordon, S.; Reno, M. A., Coefficients for calculating thermodynamic and transport properties of individual species, (1993), Tech. rep. NASA TM-4513
[45] Hirschfelder, J. O.; Curtiss, C. F., Molecular theory of gases and liquids, (1964), Wiley
[46] Reimann, B.; Hannemann, V., Numerical investigation of double-cone and cylinder experiments in high enthalpy flows using the DLR TAU code, (48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, (2010)), AIAA Paper 2010-1282
[47] Wilke, C. R., A viscosity equation for gas mixtures, J. Chem. Phys., 18, 517, (1950)
[48] Wright, M. J.; Bose, D.; Palmer, G. E.; Levin, E., Recommended collision integrals for transport property computations - part 1: air species, AIAA J., 43, 12, 2558-2564, (2005)
[49] Capitelli, M.; Gorse, C.; Longo, S.; Giordano, D., Collision integrals of high-temperature air species, J. Thermophys. Heat Transf., 14, 2, 259-268, (2000)
[50] Kee, R. J.; Coltrin, M. E.; Glarborg, P., Chemically reacting flow: theory and practice, (2005), John Wiley & Sons
[51] Burcat, A.; Ruscic, B., Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables, (2005), Tech. rep. TAE 960
[52] Stahl, G.; Warnatz, J., Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets, Combust. Flame, 85, 3-4, 285-299, (1991)
[53] Dunn, M. G.; Kang, S.-W., Theoretical and experimental studies of reentry plasmas, (1973), NASA Langley Research Center
[54] Wallin, S.; Johansson, A., An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, J. Fluid Mech., 43, 89-132, (2000) · Zbl 0966.76032
[55] Kok, J. C., Resolving the dependence on freestream values for the k-ω turbulence model, AIAA J., 38, 7, 1292-1295, (2000)
[56] M.S. Liou, Y. Wada, A flux splitting scheme with high-resolution and robustness for discontinuities, AIAA paper, 1994.
[57] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136, (1979) · Zbl 1364.65223
[58] van Leer, B., Upwind-difference methods for aerodynamic problems governed by the Euler equations, (Large-Scale Computations in Fluid Mechanics; Proceedings of the Fifteenth Summer Seminar on Applied Mathematics, (1985)), 327-336
[59] van Albada, G. D.; van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., 108, 1, 76-84, (1982) · Zbl 0492.76117
[60] Jawahar, P.; Kamath, H., A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids, J. Comput. Phys., 164, 1, 165-203, (2000) · Zbl 0992.76063
[61] Mor-Yossef, Y., Turbulent flow simulations on unstructured grids using a Reynolds stress model, (22nd AIAA Computational Fluid Dynamics Conference, (2015), American Institute of Aeronautics and Astronautics), AIAA Paper 2015-2761
[62] Batten, P.; Leschziner, M. A.; Goldberg, U. C., Average-state Jacobians and implicit methods for compressible viscous and turbulent flows, J. Comput. Phys., 137, 1, 38-78, (1997) · Zbl 0901.76043
[63] Lee, S.; Choi, D. W., On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations, Int. J. Numer. Methods Fluids, 50, 2, 165-197, (2006) · Zbl 1161.76376
[64] Candler, G. V.; Subbareddy, P. K.; Nompelis, I., Decoupled implicit method for aerothermodynamics and reacting flows, AIAA J., 51, 5, 1245-1254, (2013)
[65] Yee, H. C.; Klopfer, G. H.; Montagn, J. L., High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows, J. Comput. Phys., 88, 1, 31-61, (1990) · Zbl 0697.76079
[66] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods, J. Comput. Phys., 40, 2, 263-293, (1981) · Zbl 0468.76066
[67] Amaladas, J. R.; Kamath, H., Implicit and multigrid procedures for steady-state computations with upwind algorithms, Comput. Fluids, 28, 2, 187-212, (1999) · Zbl 0968.76047
[68] Mor-Yossef, Y., Unconditionally stable time marching scheme for Reynolds stress models, J. Comput. Phys., 276, 635-664, (2014) · Zbl 1349.76511
[69] Lian, C.; Xia, G.; Merkle, C. L., Impact of source terms on reliability of CFD algorithms, Comput. Fluids, 39, 10, 1909-1922, (2010) · Zbl 1245.76069
[70] Kim, C., Approximate Jacobian methods for efficient calculation of reactive flows, (36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2001)), 1-10
[71] Kim, S.-L.; Jeung, I.-S.; Choi, Y.-H., Partially implicit scheme for chemically reacting flows at all Mach numbers, AIAA J., 39, 10, 1893-1900, (2001)
[72] Merkle, C. L.; Deshpande, M.; Venkateswaran, S., Efficient implementation of turbulence modeling in computational schemes, (Proceedings of the Second U.S. National Congress on Computational Mechanics, (1993), Pergamon Oxford)
[73] Rogers, R. C.; Chinitz, W., Using a global hydrogen-air combustion model in turbulent reacting flow calculations, AIAA J., 21, 4, 586-591, (1983)
[74] Axler, S., Linear algebra done right, (1997), Springer · Zbl 0886.15001
[75] Yavneh, I., Why multigrid methods are so efficient, Comput. Sci. Eng., 8, 6, 12-22, (2006)
[76] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 138, 333-390, (1977) · Zbl 0373.65054
[77] Wasserman, M., Multigrid acceleration of turbulent reacting flow simulations, (2014), Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, PhD thesis
[78] Schumann, U., Realizability of Reynolds-stress turbulence models, Phys. Fluids, 20, 721-725, (1977) · Zbl 0362.76099
[79] Hemker, P. W.; Koren, B., Defect correction and nonlinear multigrid for steady Euler equations, (1988), VKI, Computational Fluid Dynamics · Zbl 0679.76034
[80] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, (14th Fluid and Plasma Dynamic Conference, (1981)), AIAA Paper 81-1259
[81] Fox, L., Numerical solutions of ordinary and partial differential equations, (1962), Pergamon Press New York · Zbl 0101.09904
[82] Pereyra, V., Iterated deferred corrections for nonlinear operator equations, Numer. Math., 10, 21, (1967) · Zbl 0258.65059
[83] Koren, B., Low-diffusion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler flows, (1990), Tech. rep. Report NM-R9021 · Zbl 0729.76050
[84] Koren, B., Multigrid and defect correction for the steady Navier-Stokes equations, J. Comput. Phys., 87, 1, 25-46, (1990) · Zbl 0687.76022
[85] Altas, I.; Burrage, K., A high accuracy defect-correction multigrid method for the steady incompressible Navier-Stokes equations, J. Comput. Phys., 114, 2, 227-233, (1994) · Zbl 0811.65113
[86] Juncu, G.; Mihail, R., Numerical solution of the steady incompressible Navier-Stokes equations for the flow past a sphere by a multigrid defect correction technique, Int. J. Numer. Methods Fluids, 11, 4, 379-395, (1990) · Zbl 0711.76067
[87] Thomas, J. L.; Bonhaus, D.; Anderson, W.; Rumsey, C.; Biedron, R., An o(nm^2) plane solver for the compressible Navier-Stokes equations, (37th Aerospace Sciences Meeting and Exhibit, (1999), American Institute of Aeronautics and Astronautics), AIAA-99-0785
[88] Thomas, J. L.; Diskin, B.; Brandt, A., Distributed relaxation multigrid and defect correction applied to the compressible Navier-Stokes equations, (14th Computational Fluid Dynamics Conference, (1999)), AIAA 99-3334
[89] Epstein, B.; Averbuch, A.; Yavneh, I., An accurate ENO driven multigrid method applied to 3D turbulent transonic flows, J. Comput. Phys., 168, 2, 316-338, (2001) · Zbl 0987.76062
[90] Hackbusch, W., Multi-grid methods and applications, (2010), Springer-Verlag
[91] Auzinger, W.; Stetter, H. J., Defect corrections and multigrid iterations, (Multigrid Methods, (1982), Springer Berlin), 327-351 · Zbl 0505.65039
[92] Wackers, J.; Koren, B., Accurate and efficient computation of steady water flow with surface waves and turbulence, (Modelling, Analysis and Simulation, MAS, (2007)), R0704
[93] Desideri, J. A.; Hemker, P. W., Convergence analysis of the defect-correction iteration for hyperbolic problems, SIAM J. Sci. Comput., 16, 1, 88-118, (1995) · Zbl 0821.65061
[94] Mulder, W. A., A high-resolution Euler solver based on multigrid, semi-coarsening, and defect correction, J. Comput. Phys., 100, 1, 91-104, (1992) · Zbl 0757.76041
[95] Liou, M.-S.; Leer, B. V.; Shuen, J. S., Splitting of inviscid fluxes for real gases, J. Comput. Phys., 87, 1, 1-24, (1990) · Zbl 0687.76074
[96] Lehr, H. F., Experiments on shock-induced combustion, Acta Astronaut., 17, 589-597, (1972)
[97] Li, B.; Yuan, L., Convergence issues in using high-resolution schemes and lower-upper symmetric Gauss-Seidel method for steady shock-induced combustion problems, Int. J. Numer. Methods Fluids, 71, 11, 1422-1437, (2012)
[98] Sheffer, S. G.; Jameson, A.; Martinelli, L., Parallel computation of supersonic reactive flows with detailed chemistry, (35th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, (1997))
[99] Nompelis, I., Computational study of hypersonic double-cone experiments for code validation, (2004), University of Minnesota, PhD thesis
[100] Holden, M., Experimental studies of laminar separated flows induced by shock wave/boundary layer and shock/shock interaction in hypersonic flows for CFD validation, (38th Aerospace Sciences Meeting & Exhibit, Reno, NV, (1999))
[101] Holden, M. S.; Wadhams, T. P., A database of aerothermal measurements in hypersonic flows in ‘building block’ experiments for CFD validation, (41st Aerospace Sciences Meeting and Exhibit, Reno, NV, (2003))
[102] Knight, D.; Longo, J.; Drikakis, D.; Gaitonde, D.; Lani, A.; Nompelis, I.; Reimann, B.; Walpot, L., Assessment of CFD capability for prediction of hypersonic shock interactions, Prog. Aerosp. Sci., 48-49, C, 8-26, (2012)
[103] Druguet, M.-C.; Candler, G. V.; Nompelis, I., Effects of numerics on Navier-Stokes computations of hypersonic double-cone flows, AIAA J., 43, 3, 616-623, (2005)
[104] Druguet, M. C.; Ben-Dor, G.; Zeitoun, D., The interaction of supersonic and hypersonic flows with a double cone: comparison between inviscid, viscous, perfect and real gas model simulations, (Shock Waves, (2009), Springer Berlin, Heidelberg), 1527-1532
[105] Holden, M. S.; MacLean, M.; Wadhams, T. P.; Dufrene, A., Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for blind code validation studies, (21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, (2013))
[106] MacLean, M.; Holden, M. S.; Dufrene, A., Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows, (AIAA Aviation 2014, (2014)), 1-16
[107] Druguet, M.-C.; Candler, G.; Nompelis, I., Comparison of physical models in computations of high-enthalpy double-cone flows, (9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, (2012), American Institute of Aeronautics and Astronautics Reston, Virginia)
[108] Nompelis, I.; Candler, G. V., US3D predictions of double-cone and hollow cylinder-flare flows at high enthalpy, (44th AIAA Fluid Dynamics Conference, (2014))
[109] Karl, S.; Martinez-Schramm, J.; Hannemann, K., High enthalpy cylinder flow in HEG: a basis for CFD validation, (33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, Florida, (2003))
[110] Men’shov, I. S.; Nakamura, Y., Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows, (Fluid Dynamics Research, (2000))
[111] Papadopoulos, P.; Venkatapathy, E.; Prabhu, D., Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing, Appl. Math. Model., 23, 705-735, (1999) · Zbl 0956.76077
[112] Chitsomboon, T.; Kumar, A.; Tiwari, S. N., Numerical study of finite-rate supersonic combustion using parabolized equations, (25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Reno, NV, (1987))
[113] Shuen, J. S.; Yoon, S., Numerical study of chemically reacting flows using a lower-upper symmetric successive overrelaxation scheme, AIAA J., 27, 12, 1752-1760, (1989)
[114] Ju, Y., Lower-upper scheme for chemically reacting flow with finite rate chemistry, AIAA J., 33, 8, 1418-1425, (1995) · Zbl 0845.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.