×

zbMATH — the first resource for mathematics

Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement. (English) Zbl 1349.76473
Summary: We propose a numerical method to determine the artificial viscosity in magnetohydrodynamics (MHD) simulations with adaptive mesh refinement (AMR) method, where the artificial viscosity is adaptively changed due to the resolution level of the AMR hierarchy. Although the suitable value of the artificial viscosity depends on the governing equations and the model of target problem, it can be determined by von Neumann stability analysis. By means of the new method, “level-by-level artificial viscosity method,” MHD simulations of Rayleigh-Taylor instability (RTI) are carried out with the AMR method. The validity of the level-by-level artificial viscosity method is confirmed by the comparison of the linear growth rates of RTI between the AMR simulations and the simple simulations with uniform grid and uniform artificial viscosity whose resolution is the same as that in the highest level of the AMR simulation. Moreover, in the nonlinear phase of RTI, the secondary instability is clearly observed where the hierarchical data structure of AMR calculation is visualized as high resolution region floats up like terraced fields. In the applications of the method to general fluid simulations, the growth of small structures can be sufficiently reproduced, while the divergence of numerical solutions can be suppressed.
MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512, (1984) · Zbl 0536.65071
[2] De Zeeuw, D.; Powell, K. G., An adaptively-refined Cartesian mesh solver for the Euler equations, J. Comput. Phys., 104, 56-68, (1993) · Zbl 0766.76066
[3] Coirier, W. J.; Powell, K. G., Solution-adaptive Cartesian cell approach for viscous and inviscid flows, AIAA J., 34, 5, 938-945, (1996) · Zbl 0900.76407
[4] Khokhlov, A. M., Fully threaded tree for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 543, 22, (1997)
[5] Garcia, A. L.; Bell, J. B.; Crutchfield, W. Y.; Alder, B. J., Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comput. Phys., 154, 1, 134-155, (1999) · Zbl 0954.76075
[6] Ahn, H. T.; Shashkov, M., Adaptive moment-of-fluid method, J. Comput. Phys., 228, 8, 2792-2821, (2009) · Zbl 1282.76147
[7] Fuster, D.; Agbaglah, G.; Josserand, C.; Popinet, S.; Zaleski, S., Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn. Res., 41, 6, (2009) · Zbl 1423.76002
[8] Ji, H.; Lien, F.; Yee, E., A new adaptive mesh refinement data structure with an application to detonation, J. Comput. Phys., 229, 23, 8981-8993, (2010) · Zbl 1207.80023
[9] Zabelok, S.; Arslanbekov, R.; Kolobov, V., Adaptive kinetic-fluid solvers for heterogeneous computing architectures · Zbl 1349.76754
[10] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 2, 284-309, (1999) · Zbl 0952.76045
[11] De Zeeuw, D. L.; Gombosi, T. I.; Groth, C. P.T.; Powell, K. G.; Stout, Q. F., An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 28, 6, 1956-1965, (2000)
[12] Gombosi, T.; DeZeeuw, D.; Groth, C.; Powell, K., Magnetospheric configuration for parker-spiral IMF conditions: results of a 3D AMR MHD simulation, Adv. Space Res., 26, 1, 139-149, (2000)
[13] Balsara, D. S.; Norton, C. D., Highly parallel structured adaptive mesh refinement using parallel language-based approaches, Parallel Comput., 27, 1-2, 37-70, (2001) · Zbl 0971.68017
[14] Balsara, D., Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys J. Suppl. Ser., 151, 149, (2004)
[15] Kleimann, J.; Kopp, A.; Fichtner, H.; Grauer, R.; Germaschewski, K., Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement, Comput. Phys. Commun., 158, 1, 47-56, (2004) · Zbl 1196.76085
[16] Rosenberg, D.; Fournier, A.; Fischer, P.; Pouquet, A., Geophysical-astrophysical spectral-element adaptive refinement (gaspar): object-oriented h-adaptive fluid dynamics simulation, J. Comput. Phys., 215, 1, 59-80, (2006) · Zbl 1140.86300
[17] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics · Zbl 1280.76030
[18] Ziegler, U., The NIRVANA code: parallel computational MHD with adaptive mesh refinement, Comput. Phys. Commun., 179, 4, 227-244, (2008) · Zbl 1197.76102
[19] Jiang, C.; Feng, X.; Zhang, J.; Zhong, D., AMR simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates, Sol. Phys., 267, 2, 463-491, (2010)
[20] Kravtsov, A. V.; Klypin, A. A.; Khokhlov, A. M., Adaptive refinement tree - a new high-resolution N-body code for cosmological simulations, Astrophys J. Suppl. Ser., 111, 73-94, (1997)
[21] Abel, T.; Bryan, G. L.; Norman, M. L., The formation and fragmentation of primordial molecular clouds, Astrophys J., 540, 39-44, (2000)
[22] Norman, M. L.; Bryan, G. L., Cosmological adaptive mesh refinement, (Numerical Astrophysics, Proc. Int. Conf. Numer. Astrophys, Astrophysics and Space Science Library, vol. 240, (1998)), 19-28, 14
[23] Truelove, J. K.; Klein, R. I.; McKee, C. F.; Holliman, J. H.; Howell, L. H.; Greenough, J. A.; Woods, D. T., Self-gravitational hydrodynamics with three-dimensional adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation, Astrophys. J., 495, 2, 821-852, (1998)
[24] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement, Astron. Astrophys., 385, 1, 337-364, (2002)
[25] Miniati, F.; Martin, D. F., Constrained-transport magnetohydrodynamics with adaptive mesh refinement in charm, Astrophys. J. Suppl. Ser., 195, 1, 5, (2011)
[26] Clough, K.; Figueras, P.; Finkel, H.; Kunesch, M.; Lim, E. A.; Tunyasuvunakool, S., Grchombo: numerical relativity with adaptive mesh refinement, Class. Quantum Grav., 32, 245011, (2015) · Zbl 1331.83003
[27] Song, P.; DeZeeuw, D. L.; Gombosi, T. I.; Groth, C. P.T.; Powell, K. G., A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field, J. Geophys. Res., 104, A12, 28361, (1999)
[28] Anderson, M.; Hirschmann, E.; Liebling, S. L.; Neilsen, D., Relativistic MHD with adaptive mesh refinement, Class. Quantum Grav., 23, 6503, (2006) · Zbl 1133.83343
[29] Fromang, S.; Hennebelle, P.; Teyssier, R., A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical MHD, Astron. Astrophys., 457, 371-384, (2006)
[30] Matsumoto, T., Self-gravitational magnetohydrodynamics with adaptive mesh refinement for protostellar collapse, Publ. Astron. Soc. Jpn., 59, 5, 905-927, (2007)
[31] Cunningham, A. J.; Frank, A.; Varniere, P.; Mitran, S.; Jones, T. W., Simulating magnetohydrodynamical flow with constrained transport and adaptive mesh refinement; algorithms and tests of the astrobear code, Astrophys J. Suppl. Ser., 519-542, (2009)
[32] Miniati, F.; Colella, P., Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems, J. Comput. Phys., 227, 1, 400-430, (2007) · Zbl 1128.85007
[33] van der Holst, B.; Keppens, R., Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications, J. Comput. Phys., 226, 1, 925-946, (2007) · Zbl 1310.76133
[34] Zanni, C.; Ferrari, A.; Rosner, R.; Bodo, G.; Massaglia, S., MHD simulations of jet acceleration from Keplerian accretion disks: the effects of disk resistivity, Astron. Astrophys., 469, 811-828, (2007) · Zbl 1129.85004
[35] Duffin, D. F.; Pudritz, R. E., Simulating hydromagnetic processes in star formation: introducing ambipolar diffusion into an adaptive mesh refinement code, Mon. Not. R. Astron. Soc., 391, 4, 1659-1673, (2008)
[36] Hennebelle, P.; Ciardi, A., Disk formation during collapse of magnetized protostellar cores, Astron. Astrophys., 506, 29-32, (2009)
[37] Commercon, B.; Hennebelle, P.; Audit, E.; Chabrier, G.; Teyssier, R., Radiative, magnetic and numerical feedbacks on small-scale fragmentation, Astron. Astrophys., 510, 3, (2010)
[38] Etienne, Z. B.; Liu, Y. T.; Shapiro, S. L., Relativistic magnetohydrodynamics in dynamical spacetimes: a new adaptive mesh refinement implementation, Phys. Rev. D, Part. Fields, 82, 8, 084031, (2010)
[39] Mignone, A.; Zanni, C.; Tzeferacos, P.; van Straalen, B.; Colella, P.; Bodo, G., The Pluto code for adaptive mesh computations in astrophysical fluid dynamics, Astrophys. J. Suppl. Ser., 198, 1, 7, (2011)
[40] Jiang, R. L.; Fang, C.; Chen, P. F., A new MHD code with adaptive mesh refinement and parallelization for astrophysics, Comput. Phys. Commun., 183, 8, 1617-1633, (2012) · Zbl 1307.85001
[41] Müller, J.; Simon, S.; Wang, Y. C.; Motschmann, U.; Heyner, D.; Schüle, J.; Ip, W. H.; Kleindienst, G.; Pringle, G. J., Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F., Icarus, 218, 1, 666-687, (2012)
[42] Matsumoto, M.; Usui, H.; Nunami, M.; Nakamura, M.; Shinohara, I., Two-dimensional AMR-PIC plasma simulation for mini-magnetosphere of magnetized object, J. Plasma Fusion Res., 8, 2406132, (2013)
[43] Zanotti, O.; Dumbser, M., A high order special relativistic hydrodynamic code with space-time adaptive mesh refinement, Comput. Phys. Commun., 188, 21, (2013)
[44] Bryan, G. L.; Norman, M. L.; O’Shea, B. W.; Abel, T.; Wise, J. H.; Turk, M. J.; Reynolds, D. R.; Collins, D. C.; Wang, P.; Skillman, S. W.; Smith, B.; Harkness, R. P.; Bordner, J.; Kim, J.-h.; Kuhlen, M.; Xu, H.; Goldbaum, N.; Hummels, C.; Kritsuk, A. G.; Tasker, E.; Skory, S.; Simpson, C. M.; Hahn, O.; Oishi, J. S.; So, G. C.; Zhao, F.; Cen, R.; Li, Y., Enzo: an adaptive mesh refinement code for astrophysics, Astrophys. J. Suppl. Ser., 211, 2, 19, (2014)
[45] Feng, X.; Xiang, C.; Zhong, D.; Zhou, Y.; Yang, L.; Ma, X., SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes, Comput. Phys. Commun., 185, 7, 1965-1980, (2014)
[46] Wang, J.; Feng, X.; Du, A.; Ge, Y., Modeling the interaction between the solar wind and Saturn’s magnetosphere by the AMR-CESE-MHD method, J. Geophys. Res. Space Phys., 119, 12, 9919-9930, (2014)
[47] Jablonowski, C.; Oehmke, R. C.; Stout, Q. F., Block-structured adaptive meshes and reduced grids for atmospheric general circulation models, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 367, 1907, 4497-4522, (2009) · Zbl 1192.86007
[48] Blayo, E.; Debreu, L., Adaptive mesh refinement for finite-difference Ocean models: first experiments, J. Phys. Oceanogr., 29, 6, 1239-1250, (1999)
[49] Santilli, E.; Scotti, A., The stratified Ocean model with adaptive refinement, J. Comput. Phys., 291, 60-81, (2015) · Zbl 1349.86027
[50] Liu, Y. L.Y.; Sarris, C., Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach, J. Lightwave Technol., 24, 3235-3247, (2006)
[51] Sizyuk, V.; Hassanein, A., Integrated self-consistent analysis of NSTX performance during normal operation and disruptions, J. Nucl. Mater., 438, Suppl., S809-S813, (2013)
[52] Zhang, J.; Ni, M. J., A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system, J. Comput. Phys., 256, 520-542, (2014) · Zbl 1349.76411
[55] Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E.; Shalf, J., The cactus framework and toolkit: design and applications, (High Perform. Comput. Comput. Sci., VECPAR 2002, (2003)), 197-227 · Zbl 1027.65524
[58] MacNeice, P.; Olson, K. M.; Mobarry, C.; De Fainchtein, R.; Packer, C., PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126, 330-354, (2000) · Zbl 0953.65088
[60] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H., FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Astrophys. J. Suppl. Ser., 131, 1, 273-334, (2000)
[61] Löffler, F.; Faber, J.; Bentivegna, E.; Bode, T.; Diener, P.; Haas, R.; Hinder, I.; Mundim, B. C.; Ott, C. D.; Schnetter, E.; Allen, G.; Campanelli, M.; Laguna, P., The Einstein toolkit: a community computational infrastructure for relativistic astrophysics, Class. Quantum Gravity, 29, 11, 115001, (2012) · Zbl 1247.83003
[62] Goto, R.; Miura, H.; Ito, A.; Sato, M.; Hatori, T., Hall and gyro-viscosity effects on the Rayleigh-Taylor instability in a 2D rectangular slab, J. Plasma Fusion Res., 9, 1403076, (2014)
[63] Goto, R.; Miura, H.; Ito, A.; Sato, M.; Hatori, T., Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects, Phys. Plasmas, 22, 3, (2015)
[64] Usui, H.; Nagara, A.; Nunami, M.; Matsumoto, M., Development of a computational framework for block-based AMR simulations, Proc. Comput. Sci., 29, 2351-2359, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.