×

zbMATH — the first resource for mathematics

ColDICE: A parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation. (English) Zbl 1349.65551
Summary: Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a ”warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.
MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
45K05 Integro-partial differential equations
65Y05 Parallel numerical computation
76W05 Magnetohydrodynamics and electrohydrodynamics
85-08 Computational methods for problems pertaining to astronomy and astrophysics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aarseth, S. J., From NBODY1 to NBODY6: the growth of an industry, Publ. Astron. Soc. Pac., 111, 1333-1346, (1999)
[2] Aarseth, S. J.; Lin, D. N.C.; Papaloizou, J. C.B., On the collapse and violent relaxation of protoglobular clusters, Astrophys. J., 324, 288-310, (1988)
[3] Aarseth, S. J.; Turner, E. L.; Gott, J. R., N-body simulations of galaxy clustering. I - initial conditions and galaxy collapse times, Astrophys. J., 228, 664-683, (1979)
[4] Abel, T.; Hahn, O.; Kaehler, R., Tracing the dark matter sheet in phase space, Mon. Not. R. Astron. Soc., 427, 61-76, (2012)
[5] Ahrens, J.; Geveci, B.; Law, C., An end-user tool for large data visualization, visualization handbook, (2005), Elsevier
[6] Alard, C., Dark matter haloes and self-similarity, Mon. Not. R. Astron. Soc., 428, 340-348, (2013)
[7] Alard, C.; Colombi, S., A cloudy Vlasov solution, Mon. Not. R. Astron. Soc., 359, 123-163, (2005)
[8] Alimi, J.-M.; Bouchet, F. R.; Pellat, R.; Sygnet, J.-F.; Moutarde, F., Collisionless formation of filaments in an expanding universe, Astrophys. J., 354, 3-12, (1990)
[9] Angulo, R. E.; Hahn, O.; Abel, T., The warm dark matter halo mass function below the cut-off scale, Mon. Not. R. Astron. Soc., 434, 3337-3347, (2013)
[10] Appel, A. W., An efficient program for many-body simulation, SIAM J. Sci. Stat. Comput., 6, 85-103, (1985)
[11] Arber, T. D.; Vann, R. G.L., A critical comparison of Eulerian-grid-based Vlasov solvers, J. Comput. Phys., 180, 339-357, (2002) · Zbl 1001.82105
[12] Arnold, D. N.; Mukherjee, A.; Pouly, L., Locally adapted tetrahedral meshes using bisection, SIAM J. Sci. Comput., 22, 2, 431-448, (2000) · Zbl 0973.65116
[13] Ayachit, U., The paraview guide: A parallel visualization application, (2015), Kitware
[14] Bagla, J. S., Treepm: a code for cosmological N-body simulations, J. Astrophys. Astron., 23, 185-196, (2002)
[15] Bänsch, E., An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations, J. Comput. Appl. Math., 36, 1, 3-28, (1991) · Zbl 0727.76078
[16] Barnes, J.; Hut, P., A hierarchical \(O(N \log N)\) force-calculation algorithm, Nature, 324, 446-449, (1986)
[17] Bernardeau, F.; Colombi, S.; Gaztañaga, E.; Scoccimarro, R., Large-scale structure of the universe and cosmological perturbation theory, Phys. Rep., 367, 1-248, (2002) · Zbl 0996.85005
[18] Bertrand, P.; Feix, M., Non linear electron plasma oscillation: the “water bag model”, Phys. Lett. A, 28, 1, 68-69, (1968)
[19] Bertrand, P.; Feix, M. R., Un modèle dans l’espace des phases pour l’étude des plasmas non collisionnels: le “water bag”, J. Phys., 31, 5-6, 451-457, (1970)
[20] Bertschinger, E., Simulations of structure formation in the universe, Annu. Rev. Astron. Astrophys., 36, 599-654, (1998)
[21] Besse, N.; Bertrand, P., Gyro-water-bag approach in nonlinear gyrokinetic turbulence, J. Comput. Phys., 228, 3973-3995, (2009) · Zbl 1273.82071
[22] Besse, N.; Latu, G.; Ghizzo, A.; Sonnendrücker, E.; Bertrand, P., A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov Maxwell system, J. Comput. Phys., 227, 7889-7916, (2008) · Zbl 1194.83013
[23] Besse, N.; Sonnendrücker, E., Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comput. Phys., 191, 341-376, (2003) · Zbl 1030.82011
[24] Binney, J., Regular and irregular orbits in galactic bars, Mon. Not. R. Astron. Soc., 201, 1-14, (1982) · Zbl 0498.70018
[25] Binney, J., Discreteness effects in cosmological N-body simulations, Mon. Not. R. Astron. Soc., 350, 939-948, (2004)
[26] Binney, J.; Knebe, A., Two-body relaxation in cosmological simulations, Mon. Not. R. Astron. Soc., 333, 378-382, (2002)
[27] Binney, J.; Tremaine, S., Galactic dynamics, (2008), Princeton University Press · Zbl 1136.85001
[28] Boily, C. M.; Athanassoula, E.; Kroupa, P., Scaling up tides in numerical models of galaxy and halo formation, Mon. Not. R. Astron. Soc., 332, 971-984, (2002)
[29] Bouchet, F. R.; Adam, J.-C.; Pellat, R., On the way of understanding particle-in-cell simulations of gravitational clustering, Astron. Astrophys., 144, 413-426, (1985)
[30] Bouchet, F. R.; Colombi, S.; Hivon, E.; Juszkiewicz, R., Perturbative Lagrangian approach to gravitational instability, Astron. Astrophys., 296, 575, (1995)
[31] Bouchet, F. R.; Hernquist, L., Cosmological simulations using the hierarchical tree method, Astrophys. J. Suppl. Ser., 68, 521-538, (1988)
[32] Bouchet, F. R.; Juszkiewicz, R.; Colombi, S.; Pellat, R., Weakly nonlinear gravitational instability for arbitrary omega, Astrophys. J. Lett., 394, L5-L8, (1992)
[33] Boylan-Kolchin, M.; Springel, V.; White, S. D.M.; Jenkins, A.; Lemson, G., Resolving cosmic structure formation with the millennium-II simulation, Mon. Not. R. Astron. Soc., 398, 1150-1164, (2009)
[34] Brönnimann, H.; Burnikel, C.; Pion, S., Interval arithmetic yields efficient dynamic filters for computational geometry, Discrete Appl. Math., 109, 25-47, (2001) · Zbl 0967.68157
[35] Brönnimann, H.; Fabri, A.; Giezeman, G.-J.; Hert, S.; Hoffmann, M.; Kettner, L.; Pion, S.; Schirra, S., 2D and 3D linear geometry kernel, (CGAL Editorial Board, CGAL User and Reference Manual, (2015))
[36] Bryan, G. L.; Norman, M. L.; O’Shea, B. W.; Abel, T.; Wise, J. H.; Turk, M. J.; Reynolds, D. R.; Collins, D. C.; Wang, P.; Skillman, S. W.; Smith, B.; Harkness, R. P.; Bordner, J.; Kim, J.-h.; Kuhlen, M.; Xu, H.; Goldbaum, N.; Hummels, C.; Kritsuk, A. G.; Tasker, E.; Skory, S.; Simpson, C. M.; Hahn, O.; Oishi, J. S.; So, G. C.; Zhao, F.; Cen, R.; Li, Y., ENZO: an adaptive mesh refinement code for astrophysics, Astrophys. J. Suppl. Ser., 211, 19, (2014)
[37] Buchert, T., Lagrangian theory of gravitational instability of Friedman-lemaitre cosmologies and the ‘zel’dovich approximation’, Mon. Not. R. Astron. Soc., 254, 729-737, (1992)
[38] Buchert, T.; Ehlers, J., Lagrangian theory of gravitational instability of Friedman-lemaitre cosmologies - second-order approach: an improved model for non-linear clustering, Mon. Not. R. Astron. Soc., 264, 375-387, (1993)
[39] Burnikel, C.; Funke, S.; Seel, M., Exact geometric predicates using cascaded computation, (Proceedings of the Fourteenth Annual Symposium on Computational Geometry, (1998), ACM), 175-183
[40] Campos Pinto, M., Smooth particle methods without smoothing, (2011)
[41] Cheng, C. Z.; Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 330-351, (1976)
[42] Clutton-Brock, M., The gravitational field of flat galaxies, Astrophys. Space Sci., 16, 101-119, (1972)
[43] Colombi, S., Dynamics of the large-scale structure of the universe: N-body techniques, New Astron. Rev., 45, 373-377, (2001)
[44] Colombi, S.; Sousbie, T.; Peirani, S.; Plum, G.; Suto, Y., Vlasov versus N-body: the Hénon sphere, Mon. Not. R. Astron. Soc., 450, 3724-3741, (2015)
[45] Colombi, S.; Touma, J., Vlasov Poisson: the waterbag method revisited, Commun. Nonlinear Sci. Numer. Simul., 13, 46-52, (2008) · Zbl 1129.35460
[46] Colombi, S.; Touma, J., Vlasov-Poisson in 1D: waterbags, Mon. Not. R. Astron. Soc., 441, 2414-2432, (2014)
[47] Couchman, H. M.P., Mesh-refined P3M - a fast adaptive N-body algorithm, Astrophys. J. Lett., 368, L23-L26, (1991)
[48] Coulette, D.; Besse, N., Numerical comparisons of gyrokinetic multi-water-bag models, J. Comput. Phys., 248, 1-32, (2013) · Zbl 1349.82075
[49] Crouseilles, N.; Mehrenberger, M.; Sonnendrücker, E., Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229, 1927-1953, (2010) · Zbl 1303.76103
[50] Crouseilles, N.; Respaud, T.; Sonnendrücker, E., A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Comput. Phys. Commun., 180, 1730-1745, (2009) · Zbl 1197.82012
[51] Cuperman, S.; Harten, A.; Lecar, M., A phase-space boundary integration of the Vlasov equation for collisionless one-dimensional stellar systems, Proceedings of the IAU Colloquium No. 10, Cambridge, England, August 12-15, 1970, Astrophys. Space Sci., 13, 411-424, (1971)
[52] Dehnen, W.; Read, J. I., N-body simulations of gravitational dynamics, Eur. Phys. J. Plus, 126, 55, (2011)
[53] Depackh, D. C., The water-bag model of a sheet electron beamy, J. Electron. Control, 13, 5, 417-424, (1962)
[54] Diemand, J.; Moore, B.; Stadel, J.; Kazantzidis, S., Two-body relaxation in cold dark matter simulations, Mon. Not. R. Astron. Soc., 348, 977-986, (2004)
[55] Dolag, K.; Borgani, S.; Schindler, S.; Diaferio, A.; Bykov, A. M., Simulation techniques for cosmological simulations, Space Sci. Rev., 134, 229-268, (2008)
[56] Doroshkevich, A. G.; Kotok, E. V.; Poliudov, A. N.; Shandarin, S. F.; Sigov, I. S.; Novikov, I. D., Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe, Mon. Not. R. Astron. Soc., 192, 321-337, (Aug. 1980)
[57] Doroshkevich, A. G.; Ryaben’kii, V. S.; Shandarin, S. F., Nonlinear theory of the development of potential perturbations, Astrophysics, 9, 144-153, (1973)
[58] Dritschel, D. G., Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows, Comput. Phys. Rep., 10, 3, 77-146, (1989)
[59] Edelsbrunner, H.; Mucke, E. P., Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graph., 9, 1, 66-104, (1990) · Zbl 0732.68099
[60] Efstathiou, G.; Davis, M.; White, S. D.M.; Frenk, C. S., Numerical techniques for large cosmological N-body simulations, Astrophys. J. Suppl. Ser., 57, 241-260, (1985)
[61] Eisenberg, M. A.; Malvern, L. E., On finite element integration in natural co-ordinates, Int. J. Numer. Methods Eng., 7, 4, 574-575, (1973) · Zbl 0268.65021
[62] Felippa, C. A., Advanced finite elements methods, (2013)
[63] Filbet, F.; Sonnendrücker, E.; Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172, 166-187, (2001) · Zbl 0998.65138
[64] Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P., MPFR: a multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Softw., 33, 2, 13:1-13:15, (2007) · Zbl 1365.65302
[65] Franklin, W. R., Rays—new representation for polygons and polyhedra, Comput. Vis. Graph. Image Process., 22, 3, 327-338, (1983)
[66] Franklin, W. R., Polygon properties calculated from the vertex neighborhoods, (Proceedings of the Third Annual Symposium on Computational Geometry, (1987), ACM), 110-118
[67] Franklin, W. R.; Kankanhalli, M. S., Volumes from overlaying 3-d triangulations in parallel, (Advances in Spatial Databases, (1993), Springer), 477-489
[68] Fujiwara, T., Vlasov simulations of stellar systems - infinite homogeneous case, Publ. Astron. Soc. Jpn., 33, 531, (1981)
[69] Fujiwara, T., Integration of the collisionless Boltzmann equation for spherical stellar systems, Publ. Astron. Soc. Jpn., 35, 547-558, (1983)
[70] Gelato, S.; Chernoff, D. F.; Wasserman, I., An adaptive hierarchical particle-mesh code with isolated boundary conditions, Astrophys. J., 480, 115-131, (1997)
[71] Goodman, J.; Heggie, D. C.; Hut, P., On the exponential instability of N-body systems, Astrophys. J., 415, 715-733, (1993)
[72] Gott, J. R.; Jurić, M.; Schlegel, D.; Hoyle, F.; Vogeley, M.; Tegmark, M.; Bahcall, N.; Brinkmann, J., A map of the universe, Astrophys. J., 624, 463-484, (2005)
[73] Granlund, T., The GNU multiple precision arithmetic library, release 4.1.4, (2004)
[74] Güçlü, Y.; Christlieb, A. J.; Hitchon, W. N.G., Arbitrarily high order convected scheme solution of the Vlasov-Poisson system, J. Comput. Phys., 270, 711-752, (2014) · Zbl 1349.76609
[75] Gutnic, M.; Haefele, M.; Paun, I.; Sonnendrücker, E., Vlasov simulations on an adaptive phase-space grid, Comput. Phys. Commun., 164, 1, 214-219, (2004) · Zbl 1196.76098
[76] Hahn, O.; Abel, T., Multi-scale initial conditions for cosmological simulations, Mon. Not. R. Astron. Soc., 415, 2101-2121, (2011)
[77] Hahn, O.; Abel, T.; Kaehler, R., A new approach to simulating collisionless dark matter fluids, Mon. Not. R. Astron. Soc., 434, 1171-1191, (2013)
[78] Hahn, O.; Angulo, R. E., An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics, Mon. Not. R. Astron. Soc., 455, 1115-1133, (2016)
[79] Heath, R. E.; Gamba, I. M.; Morrison, P. J.; Michler, C., A discontinuous Galerkin method for the Vlasov-Poisson system, J. Comput. Phys., 231, 1140-1174, (2012) · Zbl 1244.82081
[80] Hernquist, L., Performance characteristics of tree codes, Astrophys. J. Suppl. Ser., 64, 715-734, (1987)
[81] Hernquist, L.; Barnes, J. E., Are some N-body algorithms intrinsically less collisional than others?, Astrophys. J., 349, 562-569, (1990)
[82] Hernquist, L.; Ostriker, J. P., A self-consistent field method for galactic dynamics, Astrophys. J., 386, 375-397, (1992)
[83] Ho-Le, K., Finite element mesh generation methods: a review and classification, Comput. Aided Des., 20, 1, 27-38, (1988) · Zbl 0661.65124
[84] Hockney, R. W., Methods in Computational Physics, vol. 9, 135, (1970)
[85] Hockney, R. W.; Eastwood, J. W., Computer simulation using particles, (1981), McGraw-Hill New York · Zbl 0662.76002
[86] Hozumi, S., A phase-space approach to collisionless stellar systems using a particle method, Astrophys. J., 487, 617-624, (1997)
[87] James, R. A., The solution of Poisson’s equation for isolated source distributions, J. Comput. Phys., 25, 71-93, (1977) · Zbl 0373.65051
[88] Janin, G., Numerical experiments with a one-dimensional gravitational system by a Euler-type method, Astron. Astrophys., 11, 188-196, (1971)
[89] Jing, Y. P.; Suto, Y., The density profiles of the dark matter halo are not universal, Astrophys. J. Lett., 529, L69-L72, (2000) · Zbl 0637.53091
[90] Jing, Y. P.; Suto, Y., Triaxial modeling of halo density profiles with high-resolution N-body simulations, Astrophys. J., 574, 538-553, (2002)
[91] Joyce, M.; Marcos, B.; Sylos Labini, F., Energy ejection in the collapse of a cold spherical self-gravitating cloud, Mon. Not. R. Astron. Soc., 397, 775-792, (2009)
[92] Karypis, G.; Kumar, V., Parallel multilevel series k-way partitioning scheme for irregular graphs, SIAM Rev., 41, 2, 278-300, (1999) · Zbl 0918.68073
[93] Karypis, G.; Kumar, V., Multilevel k-way hypergraph partitioning, VLSI Des., 11, 3, 285-300, (2000)
[94] Lab, Karypis, METIS - family of graph and hypergraph partitioning software, (2013)
[95] Klimas, A. J., A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions, J. Comput. Phys., 68, 202-226, (1987) · Zbl 0613.76130
[96] Klimas, A. J.; Farrell, W. M., A splitting algorithm for Vlasov simulation with filamentation filtration, J. Comput. Phys., 110, 150-163, (1994) · Zbl 0790.76064
[97] Klypin, A.; Prada, F.; Yepes, G.; Heß, S.; Gottlöber, S., Halo abundance matching: accuracy and conditions for numerical convergence, Mon. Not. R. Astron. Soc., 447, 3693-3707, (2015)
[98] Klypin, A. A.; Shandarin, S. F., Three-dimensional numerical model of the formation of large-scale structure in the universe, Mon. Not. R. Astron. Soc., 204, 891-907, (Sep. 1983)
[99] Knebe, A.; Green, A.; Binney, J., Multi-level adaptive particle mesh (MLAPM): a c code for cosmological simulations, Mon. Not. R. Astron. Soc., 325, 845-864, (2001)
[100] Komatsu, E.; Smith, K. M.; Dunkley, J.; Bennett, C. L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M. R.; Page, L.; Spergel, D. N.; Halpern, M.; Hill, R. S.; Kogut, A.; Limon, M.; Meyer, S. S.; Odegard, N.; Tucker, G. S.; Weiland, J. L.; Wollack, E.; Wright, E. L., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. Ser., 192, 18, (2011)
[101] Kossaczký, I., A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math., 55, 3, 275-288, (1994) · Zbl 0823.65119
[102] Kravtsov, A. V.; Klypin, A. A.; Khokhlov, A. M., Adaptive refinement tree: a new high-resolution N-body code for cosmological simulations, Astrophys. J. Suppl. Ser., 111, 73-94, (1997)
[103] Lahav, O.; Lilje, P. B.; Primack, J. R.; Rees, M. J., Dynamical effects of the cosmological constant, Mon. Not. R. Astron. Soc., 251, 128-136, (1991)
[104] Liu, A.; Joe, B., On the shape of tetrahedra from bisection, Math. Comput., 63, 141-154, (1994) · Zbl 0815.51016
[105] Lo, S., Finite element mesh generation and adaptive meshing, Prog. Struct. Eng. Mater., 4, 4, 381-399, (2002)
[106] Martel, H.; Shapiro, P. R., A convenient set of comoving cosmological variables and their application, Mon. Not. R. Astron. Soc., 297, 467-485, (1998)
[107] Mehrenberger, M.; Violard, E.; Hoenen, O.; Campos Pinto, M.; Sonnendrücker, E., A parallel adaptive Vlasov solver based on hierarchical finite element interpolation, Nucl. Instrum. Methods Phys. Res. A, 558, 188-191, (2006)
[108] Meiss, J., Symplectic maps, variational principles, and transport, Rev. Mod. Phys., 64, 3, 795, (1992) · Zbl 1160.37302
[109] Melott, A. L., Simulation of gravitational superclustering of massive neutrinos, Phys. Rev. Lett., 48, 894-896, (1982)
[110] Melott, A. L., Massive neutrinos in large-scale gravitational clustering, Astrophys. J., 264, 59-78, (1983)
[111] Melott, A. L., Two-dimensional simulation of the gravitational superclustering of collisionless particles, Mon. Not. R. Astron. Soc., 202, 595-604, (1983)
[112] Melott, A. L., Comment on ‘discreteness effects in simulations of hot/warm dark matter’ by J. Wang and S.D.M. white, (2007)
[113] Melott, A. L.; Shandarin, S. F.; Splinter, R. J.; Suto, Y., Demonstrating discreteness and collision error in cosmological N-body simulations of dark matter gravitational clustering, Astrophys. J. Lett., 479, L79-L83, (1997)
[114] Moore, B.; Governato, F.; Quinn, T.; Stadel, J.; Lake, G., Resolving the structure of cold dark matter halos, Astrophys. J. Lett., 499, L5-L8, (1998) · Zbl 0915.35097
[115] Moutarde, F.; Alimi, J.-M.; Bouchet, F. R.; Pellat, R., Scale invariance and self-similar behavior of dark matter halos, Astrophys. J., 441, 10-17, (1995)
[116] Moutarde, F.; Alimi, J.-M.; Bouchet, F. R.; Pellat, R.; Ramani, A., Precollapse scale invariance in gravitational instability, Astrophys. J., 382, 377-381, (1991)
[117] Nakamura, T.; Yabe, T., Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 120, 122-154, (1999) · Zbl 1001.82003
[118] Navarro, J. F.; Frenk, C. S.; White, S. D.M., The structure of cold dark matter halos, Astrophys. J., 462, 563-575, (1996)
[119] Navarro, J. F.; Frenk, C. S.; White, S. D.M., A universal density profile from hierarchical clustering, Astrophys. J., 490, 493-508, (1997)
[120] Nishida, M. T.; Yoshizawa, M.; Watanabe, Y.; Inagaki, S.; Kato, S., Vlasov simulations of stellar disks - part two - nonaxisymmetric case, Publ. Astron. Soc. Jpn., 33, 567-582, (1981)
[121] Peebles, P. J.E., The large-scale structure of the universe, (1980), Princeton University Press Princeton, NJ
[122] Pinto, M. C.; Mehrenberger, M., Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system, Numer. Math., 108, 3, 407-444, (2008) · Zbl 1187.65108
[123] Ade, P. A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J., Planck 2013 results. XVI. cosmological parameters, Astron. Astrophys., 571, (2014)
[124] Ade, P. A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G., Planck 2015 results. XIII. cosmological parameters, (2015)
[125] Power, C.; Navarro, J. F.; Jenkins, A.; Frenk, C. S.; White, S. D.M.; Springel, V.; Stadel, J.; Quinn, T., The inner structure of λCDM haloes - I. A numerical convergence study, Mon. Not. R. Astron. Soc., 338, 14-34, (2003)
[126] Qiu, J.-M.; Christlieb, A., A conservative high order semi-Lagrangian WENO method for the Vlasov equation, J. Comput. Phys., 229, 1130-1149, (2010) · Zbl 1188.82069
[127] Rasio, F. A.; Shapiro, S. L.; Teukolsky, S. A., Solving the Vlasov equation in general relativity, Astrophys. J., 344, 146-157, (1989)
[128] Rivara, M.-C., Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal., 21, 3, 604-613, (1984) · Zbl 0574.65133
[129] Roberts, K. V.; Berk, H. L., Nonlinear evolution of a two-stream instability, Phys. Rev. Lett., 19, 297-300, (1967)
[130] Rossmanith, J. A.; Seal, D. C., A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys., 230, 6203-6232, (2011) · Zbl 1419.76506
[131] Shandarin, S.; Habib, S.; Heitmann, K., Cosmic web, multistream flows, and tessellations, Phys. Rev. D, 85, 8, (2012)
[132] Shlosman, I.; Hoffman, Y.; Shaviv, G., Non-linear dynamic stability of spherical stellar systems, Mon. Not. R. Astron. Soc., 189, 723-736, (1979) · Zbl 0438.70012
[133] Shoucri, M. M.; Gagne, R. R.J., Splitting schemes for the numerical solution of a two-dimensional Vlasov equation, J. Comput. Phys., 27, 315-322, (1978) · Zbl 0388.65041
[134] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149, 201-220, (1999) · Zbl 0934.76073
[135] Splinter, R. J., A nested-grid particle-mesh code for high-resolution simulations of gravitational instability in cosmology, Mon. Not. R. Astron. Soc., 281, 281-293, (1996)
[136] Splinter, R. J.; Melott, A. L.; Shandarin, S. F.; Suto, Y., Fundamental discreteness limitations of cosmological N-body clustering simulations, Astrophys. J., 497, 38-61, (1998)
[137] Springel, V., The cosmological simulation code GADGET-2, Mon. Not. R. Astron. Soc., 364, 1105-1134, (2005)
[138] Springel, V.; Wang, J.; Vogelsberger, M.; Ludlow, A.; Jenkins, A.; Helmi, A.; Navarro, J. F.; Frenk, C. S.; White, S. D.M., The aquarius project: the subhaloes of galactic haloes, Mon. Not. R. Astron. Soc., 391, 1685-1711, (2008)
[139] Springel, V.; Yoshida, N.; White, S. D.M., GADGET: a code for collisionless and gasdynamical cosmological simulations, New Astron., 6, 79-117, (2001)
[140] Stadel, J.; Potter, D.; Moore, B.; Diemand, J.; Madau, P.; Zemp, M.; Kuhlen, M.; Quilis, V., Quantifying the heart of darkness with GHALO - a multibillion particle simulation of a galactic halo, Mon. Not. R. Astron. Soc., 398, L21-L25, (2009)
[141] Suisalu, I.; Saar, E., An adaptive multigrid solver for high-resolution cosmological simulations, Mon. Not. R. Astron. Soc., 274, 287-299, (1995)
[142] A. Taruya, S. Colombi, 2016, in preparation.
[143] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385, 337-364, (2002)
[144] Umeda, T., A conservative and non-oscillatory scheme for Vlasov code simulations, Earth Planets Space, 60, 773-779, (2008)
[145] Utsumi, T.; Kunugi, T.; Koga, J., A numerical method for solving the one-dimensional vlasov—poisson equation in phase space, Comput. Phys. Commun., 108, 2, 159-179, (1998) · Zbl 0931.65137
[146] van Albada, T. S.; van Gorkom, J. H., Experimental stellar dynamics for systems with axial symmetry, Astron. Astrophys., 54, 121-126, (1977)
[147] Viel, M.; Becker, G. D.; Bolton, J. S.; Haehnelt, M. G., Warm dark matter as a solution to the small scale crisis: new constraints from high redshift lyman-α forest data, Phys. Rev. D, 88, 4, (2013)
[148] Villumsen, J. V., A new hierarchical particle-mesh code for very large scale cosmological N-body simulations, Astrophys. J. Suppl. Ser., 71, 407-431, (1989)
[149] Waldvogel, J., The Newtonian potential of homogeneous polyhedra, Z. Angew. Math. Phys., 30, 2, 388-398, (1979) · Zbl 0421.70005
[150] Watanabe, Y.; Inagaki, S.; Nishida, M. T.; Tanaka, Y. D.; Kato, S., Vlasov simulations of stellar disks - part one - axisymmetric case, Publ. Astron. Soc. Jpn., 33, 541-565, (1981)
[151] Xu, G., A new parallel N-body gravity solver: TPM, Astrophys. J. Suppl. Ser., 98, 355-366, (1995)
[152] Yoshikawa, K.; Yoshida, N.; Umemura, M., Direct integration of the collisionless Boltzmann equation in six-dimensional phase space: self-gravitating systems, Astrophys. J., 762, 116, (2013)
[153] Zaki, S. I.; Gardner, L. R.T.; Boyd, T. J.M., A finite element code for the simulation of one-dimensional Vlasov plasmas. I - theory, J. Comput. Phys., 79, 184-199, (1988) · Zbl 0658.76111
[154] Zel’dovich, Y. B., Gravitational instability: an approximate theory for large density perturbations, Astron. Astrophys., 5, 84-89, (1970)
[155] Zhang, L.-B., A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection, Numer. Math.: Theory Methods Appl., 2, 65-89, (2009) · Zbl 1199.65399
[156] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The finite element method: its basis and fundamentals, (2005), Elsevier/Butterworth-Heinemann Oxford · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.