×

zbMATH — the first resource for mathematics

Global versus local search: the impact of population sizes on evolutionary algorithm performance. (English) Zbl 1356.90113
Summary: In the field of Evolutionary Computation, a common myth that “An Evolutionary Algorithm (EA) will outperform a local search algorithm, given enough runtime and a large-enough population” exists. We believe that this is not necessarily true and challenge the statement with several simple considerations. We then investigate the population size parameter of EAs, as this is the element in the above claim that can be controlled. We conduct a related work study, which substantiates the assumption that there should be an optimal setting for the population size at which a specific EA would perform best on a given problem instance and computational budget. Subsequently, we carry out a large-scale experimental study on 68 instances of the Traveling Salesman Problem with static population sizes that are powers of two between \((1+2)\) and \((262144+524288)\) EAs as well as with adaptive population sizes. We find that analyzing the performance of the different setups over runtime supports our point of view and the existence of optimal finite population size settings.
MSC:
90C26 Nonconvex programming, global optimization
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abu Bakar, N., Mahadzir, M.F.: The impact of population size on knowledge acquisition in genetic algorithms paradigm: finding solutions in the game of sudoku. In: Baharom, F., Mahmuddin, M., Yusof Y, Ishak, W.H.W., Saip, M.A. (eds.) Knowledge Management: Theory, Research, and Practice. Proceedings of the 5th International Conference on Knowledge Management (KMICe’10), Universiti Utara Malaysia (UUM), pp. 644-648. Sintok, Kedah, Malaysia (2010)
[2] Angeline, P.J.: Subtree crossover: building block engine or macromutation? In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Iba, H., Riolo, R.L. (eds.) Proceedings of the Second Annual Conference on Genetic Programming (GP’97), pp. 9-17. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1997)
[3] Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2007) · Zbl 1130.90036
[4] Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: Corne, D.W., Michalewicz, Z., McKay, R.I., Eiben ÁE, Fogel, D.B., Fonseca, C.M., Raidl, G.R., Tan, K.C., Zalzala, A.M.S. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05), pp. 1769-1776. IEEE Computer Society, Piscataway, NJ, USA (2005). doi:10.1109/CEC.2005.1554902
[5] Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Computational Intelligence Library. Oxford University Press Inc, New York (1997)
[6] Bentley, P.J., Kumar, S.P.: The ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., Daida, J.M., Eiben, Á.E., Garzon, M.H., Honavar, V., Jakiela, M.J., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), pp. 35-43. Morgan Kaufmann Publishers Inc., San Francisco (1999)
[7] Berend, D; Korach, E; Zucker, S, Tabu search for the BWC problem, J. Glob. Optim., 54, 649-667, (2012) · Zbl 1263.05027
[8] Beyer, H; Schwefel, H, Evolution strategies—a comprehensive introduction, Nat Comput Int J, 1, 3-52, (2002) · Zbl 1014.68134
[9] Birbil, Şİ; Fang, S; Sheu, R, On the convergence of a population-based global optimization algorithm, J. Glob. Optim., 30, 301-318, (2004) · Zbl 1066.90086
[10] Boddy, M.S., Dean, T.L.: Solving time-dependent planning problems. Tech. Rep. CS-89-03, Brown University, Department of Computer Science, Providence, RI, USA (1989) · Zbl 0713.68069
[11] Brest, J; Maučec, MS, Self-adaptive differential evolution algorithm using population size reduction and three strategies, Spacecom, 15, 2157-2174, (2011)
[12] Campana, EF; Fasano, G; Pinto, A, Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization, J. Glob. Optim., 48, 347-397, (2010) · Zbl 1206.90121
[13] Chen, D; Lee, C; Park, C; Mendes, P, Parallelizing simulated annealing algorithms based on high-performance computer, J. Glob. Optim., 39, 261-289, (2007) · Zbl 1179.90330
[14] Chen, T; Tang, K; Chen, G; Yao, X, A large population size can be unhelpful in evolutionary algorithms, Theor. Comput. Sci., 436, 54-70, (2012) · Zbl 1242.68286
[15] Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) Proceedings of the 11th International Conference on Parallel Problem Solving From Nature, Part 2 (PPSN’10-2), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 6239, pp. 300-309 (2010). doi:10.1007/978-3-642-15871-1_31
[16] Costa, J.C., Tavares, R., Da Rosa, A.C.: An experimental study on dynamic random variation of population size. In: IEEE International Conference on Systems, Man, and Cybernetics - Human Communication and Cybernetics (SMC’99), IEEE Computer Society, Piscataway, NJ, USA (1999). doi:10.1109/ICSMC.1999.814161
[17] De Jong, K.A.: Evolutionary Computation: A Unified Approach, Bradford Books, vol. 4. MIT Press, Cambridge (2006) · Zbl 1106.68093
[18] Devert, A; Weise, T; Tang, K, A study on scalable representations for evolutionary optimization of ground structures, Evol. Comput., 20, 453-472, (2012)
[19] Doerr, B; Happ, E; Klein, C, Crossover can provably be useful in evolutionary computation, Theor. Comput. Sci., (2010) · Zbl 1267.68210
[20] Eiben ÁE, Marchiori, E., Valkó, V.A.: Evolutionary algorithms with on-the-fly population size adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria JA, Rowe, J.E., Tiño, P., Kabán, A., Schwefel, H. (eds.) Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 3242/2004, pp. 41-50 (2008). doi:10.1007/978-3-540-30217-9_5
[21] Fernandes, C., Da Rosa, A.C.: Self-regulated population size in evolutionary algorithms. In: Runarsson, T.P., Beyer, H., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Proceedings of 9th International Conference on Parallel Problem Solving from Nature (PPSN IX), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 4193/2006, pp. 920-929 (2006). doi:10.1007/11844297_93
[22] Fredman, M; Johnson, D; McGeoch, L; Ostheimer, G, Data structures for traveling salesman, J. Algorithms, 18, 432-479, (1995) · Zbl 0829.90132
[23] Gao, Y.: Population size and sampling complexity in genetic algorithms. Tech. rep., University of Alberta, Department of Computer Science, Edmonton, Alberta, Canada (2003)
[24] Glover, FW, Tabu search—part I, ORSA J. Comput., 1, 190-206, (1989) · Zbl 0753.90054
[25] Glover, FW, Tabu search—part II, ORSA J. Comput., 2, 190-206, (1990) · Zbl 0771.90084
[26] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co. Inc, Boston (1989). doi:10.1007/3-540-32444-5 · Zbl 0721.68056
[27] Goldberg, D.E., Richardson, J.T.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms and their Applications (ICGA’87), pp. 41-49. Lawrence Erlbaum Associates Inc, Mahwah, NJ, USA (1987)
[28] Gotshall, S., Rylander, B.: Optimal population size and the genetic algorithm. In: Proceedings of the 2002 WSEAS International Conferences: 2nd IMCCAS; 2nd ISA; 2nd SOSM; 4th MEM, World Scientific and Engineering Academy and Society (WSEAS), pp. 2151-2155. Greece, Athens (2002)
[29] Gutin, G.Z., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Variations, Combinatorial Optimization, vol. 12. Kluwer Academic Publishers, Norwell (2002). doi:10.1007/b101971 · Zbl 1273.90177
[30] Hallam, JW; Akman, O; Akman, F, Genetic algorithms with shrinking population size, Comput. Stat., 25, 691-705, (2010) · Zbl 1226.68082
[31] Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking: experimental setup. Tech. rep., Université Paris Sud, Institut National de Recherche en Informatique et en Automatique (INRIA) Futurs, Équipe TAO, Orsay, France (2012)
[32] Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor, MI, USA (1997) · Zbl 1274.90512
[33] He, J; Yao, X, From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms, IEEE Trans. Evol. Comput., 6, 495-511, (2002)
[34] Helsgaun, K, General k-opt submoves for the lin-kernighan TSP heuristic, Math. Program. Comput., 1, 119-163, (2009) · Zbl 1180.90269
[35] Hidalgo, J.I.: Balancing the computation effort in genetic algorithms. In: Corne, D.W., Michalewicz Z, McKay, R.I., Eiben ÁE, Fogel, D.B., Fonseca, C.M., Raidl, G.R., Tan, K.C., Zalzala AMS (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05), IEEE Computer Society, Piscataway, NJ, USA, pp. 1645-1652 (2005). doi:10.1109/CEC.2005.1554886
[36] Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975) · Zbl 0317.68006
[37] Hoos, H.H., Stützle, T.: Evaluating las vegas algorithms: pitfalls and remedies. In: Cooper, G.F., Moral, S. (eds.) Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98), Morgan Kaufmann Publishers Inc., San Francisco, C.A., USA, pp. 238-245, also published as Technical Report “Forschungsbericht AIDA-98-02“ of the Fachgebiet Intellektik, Fachbereich Informatik, Technische Hochschule Darmstadt, Germany (1998)
[38] Hu, T., Banzhaf, W.: Nonsynonymous to synonymous substitution ratio \(k_a/k_s\): measurement for rate of evolution in evolutionary computation. In: Proceedings of 10th International Conference on Parallel Problem Solving from Nature (PPSN X), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 5199/2008, pp. 448-457 (2008). doi:10.1007/978-3-540-87700-4_45 · Zbl 1066.90086
[39] Hu, T., Banzhaf, W.: The role of population size in rate of evolution in genetic programming. In: Vanneschi, L., Gustafson, S.M., Moraglio, A., de Falco, I., Ebner, M. (eds.) Proceedings of the 12th European Conference on Genetic Programming (EuroGP’09), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 5481/2009, pp. 85-96 (2009) · Zbl 1206.90121
[40] Hu, T; Harding, S; Banzhaf, W, Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm, Genet. Program. Evol. Mach., 11, 205-225, (2010)
[41] Hutter, M; Legg, S, Fitness uniform optimization, IEEE Trans. Evol. Comput., 10, 568-589, (2006)
[42] Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not. In: Mendel, J.M., Omari, T., Yao, X. (eds.) The First IEEE Symposium on Foundations of Computational Intelligence (FOCI’07), IEEE Computer Society, Piscataway, NJ, USA, pp. 25-32 (2007). doi:10.1109/FOCI.2007.372143
[43] Jansen, T., Wegener, I.: On the utility of populations in evolutionary algorithms. In: Spector, L., Goodman, E.D., Wu, A.S., Langdon, W.B., Voigt, H., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E.K. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’01), pp. 1034-1041. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (2001)
[44] Jansen, T; Jong, KA; Wegener, I, On the choice of the offspring population size in evolutionary algorithms, Evol. Comput., 13, 413-440, (2005)
[45] Khor, E.F., Tan, K.C., Wang, M.L., Lee, T.H.: Evolutionary algorithm with dynamic population size for multi-objective optimization. In: Proceedings of the 26th Annual Confjerence of the IEEE Industrial Electronics Society (IECON’00), IEEE, IEEE Singapore Section, Singapore, pp. 2768-2773 (2000). doi:10.1109/IECON.2000.972436 · Zbl 0256.90038
[46] Kirkpatrick, S; Gelatt, CD; Vecchi, MP, Optimization by simulated annealing, Sci. Mag., 220, 671-680, (1983) · Zbl 1225.90162
[47] Koumousis, VK; Katsaras, CP, A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance, IEEE Trans. Evol. Comput., 10, 19-28, (2006)
[48] Larrañaga, P; Kuijpers, CMH; Murga, RH; Inza, I; Dizdarevic, S, Genetic algorithms for the travelling salesman problem: a review of representations and operators, J. Artif. Intell. Res., 13, 129-170, (1999)
[49] Lawler, E.L.G., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: The traveling salesman problem: a guided tour of combinatorial optimization. Estimation, Simulation, and Control—Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley Interscience, Chichester (1985)
[50] Lehman, J; Stanley, KO, Abandoning objectives: evolution through the search for novelty alone, Evol. Comput., 19, 189-223, (2011)
[51] Li, D., Wang, L.: A study on the optimal population size of genetic algorithm. In: Proceedings of Fourth World Congress on Intelligent Control and Automation, vol. 4 (WCICA’02), IEEE, IEEE Singapore Section, Singapore, pp. 3019-3021 (2002). doi:10.1109/WCICA.2002.1020082 (in Chinese) · Zbl 1225.90162
[52] Li, W, Seeking global edges for traveling salesman problem in multi-start search, J. Glob. Optim., 51, 515-540, (2011) · Zbl 1229.90166
[53] Lin, J., Chen, Y.: On the effect of population size and selection mechanism from the viewpoint of collaboration between exploration and exploitation. In: Proceedings of the 2013 IEEE Workshop on Memetic Computing (MC), 2013 IEEE Symposium Series on Computational Intelligence (SSCI’13), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 16-23 (2013). doi:10.1109/MC.2013.6608202
[54] Lin, S; Kernighan, BW, An effective heuristic algorithm for the traveling-salesman problem, Oper. Res., 21, 498-516, (1973) · Zbl 0256.90038
[55] Liu, W., Weise, T., Wu, Y., Chiong, R.: Hybrid ejection chain methods for the traveling salesman problem. In: Gong, M., Pan, L., Song, T., Tang K, Zhang, X. (eds.) The 10th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA’15), Springer-Verlag GmbH, Berlin, Germany, Communications in Computer and Information Science, vol. 562, pp. 268-282 (2015)
[56] Lobo, F.G.: A review of adaptive population sizing schemes in genetic algorithms. In: Beyer, H., O’Reilly, U., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W., Cantú-Paz, E., Dasgupta, D., Deb, K., Foster JA, de Jong, E.D., Lipson, H., Llorà, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Watson, J., Zitzler, E. (eds.) Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05), ACM Press, New York, NY, USA, pp. 228-234 (2005). doi:10.1145/1102256.1102310
[57] Lu, H., Yen, G.G.: Dynamic population size in multiobjective evolutionary algorithms. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Iba H, Marrow, P., Shackleton, M. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’02), 2002 IEEE World Congress on Computation Intelligence (WCCI’02), IEEE Computer Society Press, Los Alamitos, CA, USA, vol. 1-2, pp. 1648-1653 (2002). doi:10.1109/CEC.2002.1004489 · Zbl 1180.90269
[58] Lu, Q; Yao, X, Clustering and learning Gaussian distribution for continuous optimization, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 35, 195-204, (2005)
[59] Maaranen, H; Miettinen, K; Penttinen, A, On initial populations of a genetic algorithm for continuous optimization problems, J. Glob. Optim., 37, 405-436, (2007) · Zbl 1156.90028
[60] Marinakis, Y; Migdalas, A; Pardalos, PM, A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm, J. Glob. Optim., 38, 555-580, (2007) · Zbl 1145.90010
[61] Minetti, G.F., Alfonso, H.A.: Variable size population in parallel evolutionary algorithms. In: Kwaśnicka, H., Paprzycki, M. (eds.) Proceedings of the 5th International Conference on Intelligent Systems Design and Applications (ISDA’05), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 350-355 (2005). doi:10.1109/ISDA.2005.99 · Zbl 1180.90269
[62] Osterman, C., Rego, C.: The satellite list and new data structures for traveling salesman problems. Working Paper Series HCES-06-03, University of Mississippi, School of Business Administration, Hearin Center for Enterprise Science, University, MS, USA, (2006). http://www.akira.ruc.dk/keld/teaching/algoritmedesign_f08/Artikler/02/Osterman03
[63] Ouyang, J., Weise, T., Devert, A., Chiong, R.: Sdgp: A developmental approach for traveling salesman problems. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS’13), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 78-85 (2013). doi:10.1109/CIPLS.2013.6595203
[64] Palmer, C.C., Kershenbaum, A.: Representing trees in genetic algorithms. In: Michalewicz, Z., Schaffer, J.D., Schwefel, H., Fogel, D.B., Kitano, H. (eds.) Proceedings of the First IEEE Conference on Evolutionary Computation (CEC’94), IEEE Computer Society, Piscataway, NJ, USA, vol. 1, pp. 379-384 (1994) · Zbl 1226.68082
[65] Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Jidō, K., Gakkai, S. (eds.) Proceedings of IEEE International Conference on Evolutionary Computation (CEC’96), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 798-803 (1996). doi:10.1109/ICEC.1996.542703
[66] Piszcz, A.T., Soule, T.: Genetic programming: optimal population sizes for varying complexity problems. In: Keijzer, M., Cattolico, M. (eds.) Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO’06), ACM Press, New York, NY, USA, pp. 953-954 (2006). doi:10.1145/1143997.1144166
[67] Potter, MA; Jong, KA, Cooperative coevolution: an architecture for evolving coadapted subcomponents, Evol. Comput., 8, 1-29, (2000)
[68] Poursoltan, S., Neumann, F.: Ruggedness quantifying for constrained continuous fitness landscapes. In: Datta, R., Deb, K. (eds.) Evolutionary Constrained Optimization, Infosys Science Foundation Series, chap 2. Springer, India, pp. 29-50 (2015). doi:10.1007/978-81-322-2184-5_2 · Zbl 0829.90132
[69] Radcliffe, NJ, The algebra of genetic algorithms, Ann. Math. Artif. Intell., 10, 339-384, (1994) · Zbl 0855.68034
[70] Rego, C; Gamboa, D; Glover, F; Osterman, C, Traveling salesman problem heuristics: leading methods, implementations and latest advances, Eur. J. Oper. Res., 2011, 427-441, (2011) · Zbl 1237.90209
[71] Reinelt, G, TSPLIB—a traveling salesman problem library, ORSA J. Comput., 3, 376-384, (1991) · Zbl 0775.90293
[72] Robini, MC; Reissman, P, From simulated annealing to stochastic continuation: a new trend in combinatorial optimization, J. Glob. Optim., 56, 185-215, (2013) · Zbl 1273.90177
[73] Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2013 Federated Conference on Computer Science and Information Systems (FedCSIS’13), pp. 371-376. IEEE, IEEE Singapore Section, Singapore (2013) · Zbl 1242.68286
[74] Ronald, S.: Robust encodings in genetic algorithms: a survey of encoding issues. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) IEEE International Conference on Evolutionary Computation (CEC’97), IEEE Computer Society, Piscataway, NJ, USA, pp. 43-48 (1997). doi:10.1109/ICEC.1997.592265 · Zbl 1206.90121
[75] Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, Studies in Fuzziness and Soft Computing, vol. 104, 2nd edn. Springer, Heidelberg (2006) · Zbl 1030.68083
[76] Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,\(λ \)) ea. In: Soule, T., Moore, J.H. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’12), ACM, New York, NY, USA, pp. 1349-1356 (2012). doi:10.1145/2330163.2330350
[77] Rudolph, G, Self-adaptive mutations may lead to premature convergence, IEEE Trans. Evol. Comput., 5, 410-414, (2001)
[78] Sarker, R.A., Kazi, M.F.A.: Population size, search space and quality of solution: an experimental study. In: Sarker, R.A., Reynolds, R.G., Abbass Amein, H.A., Tan, K.C., McKay, R.I., Essam, D.L., Gedeon, T. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC’03), IEEE Computer Society, Piscataway, NJ, USA, pp. 2011-2018 (2003). doi:10.1109/CEC.2003.1299920
[79] Schutte, JF; Groenwold, AA, A study of global optimization using particle swarms, J. Glob. Optim., 31, 93-108, (2005) · Zbl 1274.90512
[80] Skubch, H.: Hierarchical Strategy Learning for FLUX Agents: An Applied Technique. VDM Verlag Dr. Müller AG und Co, KG, Saarbrücken (2006)
[81] Storch, T.: On the choice of the population size. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H., Burke, E.K., Darwen, P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O.E., Lanzi, P.L., Spector, L., Tettamanzi, A.G.B., Thierens, D. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Part I (GECCO’04), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 3102/2004, pp. 748-760 (2004) · Zbl 1014.68134
[82] Storch, T, On the choice of the parent population size, Evol. Comput., 16, 557-578, (2008)
[83] Tompkins, D.A.D., Hoos, H.H.: Ubcsat: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) Revised Selected Papers from the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT’04), Springer-Verlag GmbH, Berlin, Germany, Lecture Notes in Computer Science (LNCS), vol. 3542, pp. 306-320 (2004). doi:10.1007/11527695_24 · Zbl 1122.68620
[84] Vincenti, A; Ahmadian, MR; Vannucci, P, BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering, J. Glob. Optim., 48, 399-421, (2010) · Zbl 1206.90230
[85] Weise, T.: Global Optimization Algorithms—Theory and Application. it-weise.de (self-published), Germany (2009) · Zbl 0855.68034
[86] Weise, T., Zapf, M., Chiong, R., Nebro Urbaneja, A.J.: Why is optimization difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation, Studies in Computational Intelligence, vol. 193, chap 1. Springer-Verlag, Berlin/Heidelberg, pp. 1-50 (2009). doi:10.1007/978-3-642-00267-0_1 · Zbl 1237.90209
[87] Weise, T., Niemczyk, S., Chiong, R., Wan, M.: A framework for multi-model edas with model recombination. In: Applications of Evolutionary Computation. Proceedings of EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Part 1 (EvoAPPLICATIONS’11), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), vol. 6624, pp. 304-313 (2011). doi:10.1007/978-3-642-20525-5_31 · Zbl 1274.90512
[88] Weise, T; Chiong, R; Tang, K, Evolutionary optimization: pitfalls and booby traps, J. Comput. Sci. Technol., 27, 907-936, (2012) · Zbl 1279.68281
[89] Weise, T; Wan, M; Tang, K; Wang, P; Devert, A; Yao, X, Frequency fitness assignment, IEEE Trans. Evol. Comput., 18, 226-243, (2013)
[90] Weise, T., Chiong, R., Tang, K., Lässig, J., Tsutsui, S., Chen, W., Michalewicz, Z., Yao, X.: Benchmarking optimization algorithms: an open source framework for the traveling salesman problem. IEEE Comput. Intell. Mag. 9(3):40-52 (2014). doi:10.1109/MCI.2014.2326101, featured article and selected paper at the website of the IEEE Computational Intelligence Society (http://cis.ieee.org/)
[91] Whitley, L.D.: A genetic algorithm tutorial. Tech. Rep. CS-93-103, Colorado State University, Computer Science Department, Fort Collins, CO, USA (1993)
[92] Whitley, LD, A genetic algorithm tutorial, Stat. Comput., 4, 65-85, (1994)
[93] Whitley, L.D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling salesman: the genetic edge recombination operator. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms (ICGA’89), pp. 133-140. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (1989)
[94] Witt, C.: Population size vs. runtime of a simple evolutionary algorithm. In: Reihe Computational Intelligence Collaborative Research Center 531: Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods CI-156/03, University of Dortmund, Dept. of Computer Science/XI, Secretary of the SFB 531, Dortmund, North Rhine-Westphalia, Germany (2003)
[95] Witt, C, Population size versus runtime of a simple evolutionary algorithm, Theor. Comput. Sci., 403, 104-120, (2008) · Zbl 1155.68075
[96] Wolpert, DH; Macready, WG, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67-82, (1997)
[97] Wu, Y., Weise, T., Chiong, R.: Local search for the traveling salesman problem: a comparative study. In: Ge, N., Lu, J., Wang, Y., Howard, N., Chen, P., Tao, X., Zhang, B., Zadeh, L.A. (eds.) 14th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC’15), pp. 213-220. IEEE, Piscataway, NJ, USA (2015)
[98] Xu, D., Weise, T., Wu, Y., Lässig, J., Chiong, R.: An investigation of hybrid tabu search for the traveling salesman problem. In: Gong M, Pan, L., Song, T., Tang, K., Zhang, X. (eds.) The 10th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA’15), Springer-Verlag GmbH, Berlin, Germany, Communications in Computer and Information Science, vol. 562, pp. 523-537 (2015)
[99] Yao, X.: Unpacking and understanding evolutionary algorithms. In: Liu, J., Alippi, C., Bouchon-Meunier, B. (eds.) Advances in Computational Intelligence: Plenary/Invited Lectures at the IEEE World Congress on Computational Intelligence (WCCI’12), Springer-Verlag GmbH, Berlin, Germany. Lecture Notes in Computer Science (LNCS), pp. 60-76 (2012). doi:10.1007/978-3-642-30687-7_4
[100] Zhang, J., Yuan, X., Buckles, B.P.: Multimodal function optimization using local ruggedness information. In: Barr, V., Markov, Z. (eds.) Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 17), pp. 380-386. AAAI Press, Menlo Park, CA, USA (2004) · Zbl 0855.68034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.