Particle-based multiscale modeling of calcium puff dynamics. (English) Zbl 1352.65022


65C35 Stochastic particle methods
92C42 Systems biology, networks


Tyche; MesoRD; Smoldyn
Full Text: DOI arXiv


[1] N. L. Allbritton, T. Meyer, and L. Stryer, Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate, Science, 258 (1992), pp. 1812–1815.
[2] M. E. Anderson, Three ways to die suddenly: Do they all require calcium calmodulin-dependent protein kinase II?, Trans. Amer. Clinical Climatolog. Assoc., 125 (2014), pp. 173–185.
[3] M. E. Anderson, J. H. Brown, and D. M. Bers, CaMKII in myocardial hypertrophy and heart failure, J. Molec. Cell. Cardiol., 51 (2011), pp. 468–473.
[4] S. Andrews and D. Bray, Stochastic simulation of chemical reactions with spatial resolution and single molecule detail, Phys. Biol., 1 (2004), pp. 137–151.
[5] M. J. Berridge, Calcium signalling and Alzheimer’s disease, Neurochem. Res., 36 (2011), pp. 1149–1156.
[6] M. J. Berridge, Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia, Cell Tissue Res., 357 (2014), pp. 477–492.
[7] M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol., 1 (2000), pp. 11–21.
[8] L. Bruno, G. Solovey, A. C. Ventura, S. Dargan, and S. P. Dawson, Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes, Cell Calcium, 47 (2010), pp. 273–286.
[9] Y. Cao, H. Li, and L. Petzold, Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, J. Chem. Phys., 121 (2004), pp. 4059–4067.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009. · Zbl 1187.68679
[11] G. W. De Young and J. Keizer, A single-pool inositol \textup1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration, Proc. Natl. Acad. Sci. USA, 89 (1992), pp. 9895–9899.
[12] G. D. Dickinson, D. Swaminathan, and I. Parker, The probability of triggering calcium puffs is linearly related to the number of inositol trisphosphate receptors in a cluster, Biophys. J., 102 (2012), pp. 1826–1836.
[13] G. D. Dickinson and I. Parker, Factors determining the recruitment of inositol trisphosphate receptor channels during calcium puffs, Biophys. J., 105 (2013), pp. 2474–2484.
[14] J. Elf and M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases, Syst. Biol., 1 (2004), pp. 230–236.
[15] R. Erban, From molecular dynamics to Brownian dynamics, Proc. Roy. Soc. A, 470 (2014), 20140036. · Zbl 1371.60144
[16] R. Erban and S. J. Chapman, Stochastic modelling of reaction-diffusion processes: Algorithms for bimolecular reactions, Phys. Biol., 6 (2009), 046001.
[17] R. Erban, S. J. Chapman, and P. Maini, A Practical Guide to Stochastic Simulations of Reaction-Diffusion Processes, preprint, http://arxiv.org/abs/0704.1908, 2007.
[18] M. Falcke, On the role of stochastic channel behavior in intracellular Ca\(^{2+}\) dynamics, Biophys. J., 84 (2003), pp. 42–56.
[19] M. B. Flegg, S. J. Chapman, and R. Erban, The two-regime method for optimizing stochastic reaction-diffusion simulations, J. Roy. Soc. Interface, 9 (2012), pp. 859–868.
[20] M. B. Flegg, S. J. Chapman, L. Zheng, and R. Erban, Analysis of the two-regime method on square meshes, SIAM J. Sci. Comput., 36 (2014), pp. B561–B588. · Zbl 1352.60118
[21] M. B. Flegg, S. Hellander, and R. Erban, Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, J. Comput. Phys., 289 (2015), pp. 1–17. · Zbl 1352.65023
[22] M. B. Flegg, S. Rüdiger, and R. Erban, Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release, J. Chem. Phys., 138 (2013), 154103.
[23] D. Fraiman, B. Pando, S. Dargan, I. Parker, and S. P. Dawson, Analysis of puff dynamics in oocytes: Interdependence of puff amplitude and interpuff interval, Biophys. J., 90 (2006), pp. 3897–3907.
[24] K. M. Franks and T. J. Sejnowski, Complexity of calcium signaling in synaptic spines, BioEssays, 24 (2002), pp. 1130–1144.
[25] M. A. Gibson and J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, 104 (2000), pp. 1876–1889.
[26] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434.
[27] A. Goldbeter, G. Dupont, and M. J. Berridge, Minimal model for signal-induced Ca\(^{2+}\) oscillations and for their frequency encoding through protein phosphorylation, Proc. Natl. Acad. Sci. USA, 87 (1990), pp. 1461–1465.
[28] J. Hake and G. T. Lines, Stochastic binding of Ca\(^{2+}\) ions in the dyadic cleft; Continuous versus random walk description of diffusion, Biophys. J., 94 (2008), pp. 4184–4201.
[29] Y. Hao, P. Kemper, and G. D. Smith, Reduction of calcium release site models via fast/slow analysis and iterative aggregation/disaggregation, Chaos, 19 (2009), pp. 1–13. · Zbl 1317.92026
[30] J. Hattne, D. Fange, and J. Elf, Stochastic reaction-diffusion simulation with MesoRD, Bioinformatics, 21 (2005), pp. 2923–2924.
[31] D. Holcman, E. Korkotian, and M. Segal, Calcium dynamics in dendritic spines, modeling and experiments, Cell Calcium, 37 (2005), pp. 467–475.
[32] H. Ji, Y. Li, and S. H. Weinberg, Calcium ion fluctuations alter channel gating in a stochastic luminal calcium release site model, IEEE/ACM Trans. Comput. Biol. Bioinform., PP (2015), pp. 1–9.
[33] J. Keener and J. Sneed, Mathematical Physiology I: Cellular Physiology, 2nd ed., Springer, New York, 2009. · Zbl 1273.92017
[34] X. Koh, B. Srinivasan, H. S. Ching, and A. Levchenko, A 3D Monte Carlo analysis of the role of dyadic space geometry in spark generation, Biophys. J., 90 (2006), pp. 1999–2014.
[35] J. Lipková, K. C. Zygalakis, S. J. Chapman, and R. Erban, Analysis of Brownian dynamics simulations of reversible bimolecular reactions, SIAM J. Appl. Math., 71 (2011), pp. 714–730. · Zbl 1229.80023
[36] E. Neher and T. Sakaba, Multiple roles of calcium ions in the regulation of neurotransmitter release, Neuron, 59 (2008), pp. 861–872.
[37] T. Opplestrup, V. Bulatov, A. Donev, M. Kalos, G. Gilmer, and B. Sadigh, First-passage kinetic Monte Carlo method, Phys. Rev. E, 80 (2009), 066701.
[38] M. Robinson, Tyche: A multiscale stochastic reaction-diffusion modeling software library in C++ and Python, 2013, ŭlhttp://tycheSSA.github.com.
[39] M. Robinson, S. Andrews, and R. Erban, Multiscale reaction-diffusion simulations with Smoldyn, Bioinformatics, 31 (2015), pp. 2406–2408.
[40] S. Rüdiger, P. Jung, and J.-W. Shuai, Termination of Ca\(^{2+}\) release for clustered ip3r channels, PLoS Comput. Biol., 8 (2012), e1002485.
[41] S. Rüdiger, C. Nagaiah, G. Warnecke, and J. Shuai, Calcium domains around single and clustered IP\(_3\) receptors and their modulation by buffers, Biophys. J., 99 (2010), pp. 3–12.
[42] S. Rüdiger, J. Shuai, W. Huisinga, C. Nagaiah, G. Warnecke, I. Parker, and M. Falcke, Hybrid stochastic and deterministic simulations of calcium blips, Biophys. J., 93 (2007), pp. 1847–1857.
[43] S. Rüdiger, J. W. Shuai, and I. M. Sokolov, Law of mass action, detailed balance, and the modeling of calcium puffs, Phys. Rev. Lett., 105 (2010), 048103.
[44] S. Rüdiger, Stochastic models of intracellular calcium signals, Phys. Rep., 534 (2014), pp. 39–87.
[45] J. W. Shuai, D. P. Yang, J. E. Pearson, and S. Rüdiger, An investigation of models of the IP\(_3\)R channel in Xenopus oocyte, Chaos, 19 (2009), 037105.
[46] G. D. Smith, L. Dai, R. M. Miura, and A. Sherman, Asymptotic analysis of buffered calcium diffusion near a point source, SIAM J. Appl. Math., 61 (2001), pp. 1816–1838. · Zbl 1053.92017
[47] I. F. Smith and I. Parker, Imaging the quantal substructure of single IP\textup3R channel activity during Ca\(^{2+}\) puffs in intact mammalian cells, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 6404–6409.
[48] S. Swillens, G. Dupont, L. Combettes, and P. Champeil, From calcium blips to calcium puffs: Theoretical analysis of the requirements for interchannel communication, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 13750–13755.
[49] A. J. Tanskanen, J. L. Greenstein, A. Chen, S. X. Sun, and R. L. Winslow, Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium release, Biophys. J., 92 (2007), pp. 3379–3396.
[50] G. Ullah, I. Parker, D.-O. D. Mak, and J. E. Pearson, Multi-scale data-driven modeling and observation of calcium puffs, Cell Calcium, 52 (2012), pp. 152–160.
[51] H. Vais, J. K. Foskett, and D.-O. D. Mak, Unitary Ca\textup(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions, J. Gen. Physiol., 136 (2010), pp. 687–700.
[52] J. van Zon and P. ten Wolde, Green’s-function reaction dynamics: A particle-based approach for simulating biochemical networks in time and space, J. Chem. Phys., 123 (2005), 234910.
[53] J. Wagner and J. Keizer, Effects of rapid buffers on Ca\(^{2+}\) diffusion and Ca\(^{2+}\) oscillations, Biophys. J., 67 (1994), pp. 447–456.
[54] X. Wang, Y. Hao, S. H. Weinberg, and G. D. Smith, Ca\(^{2+}\)-activation kinetics modulate successive puff/spark amplitude, duration and inter-event-interval correlations in a Langevin model of stochastic Ca\(^{2+}\) release, Math. Biosci., 264 (2015), pp. 101–107. · Zbl 1371.92058
[55] S. H. Weinberg and G. D. Smith, The influence of Ca\(^{2+}\) buffers on free [Ca\(^{2+}\)] fluctuations and the effective volume of Ca\(^{2+}\) microdomains, Biophys. J., 106 (2014), pp. 2693–2709.
[56] N. Wieder, R. Fink, and F. von Wegner, Exact stochastic simulation of a calcium microdomain reveals the impact of Ca\(^{2+}\) fluctuations on IP\(_3\)R gating, Biophys. J., 108 (2015), pp. 557–567.
[57] N. K. Woods and J. Padmanabhan, Neuronal calcium signaling and Alzheimer’s disease, Adv. Exper. Med. Biol., 740 (2012), pp. 1193–1217.
[58] Y. Yao, J. Choi, and I. Parker, Quantal puffs of intracellular Ca\(^{2+}\) evoked by inositol trisphosphate in Xenopus oocytes, J. Physiol., 482 (1995), pp. 533–553.
[59] S. Zeng and W. R. Holmes, The effect of noise on CaMKII activation in a dendritic spine during LTP induction, J. Neurophysiol., 103 (2010), pp. 1798–1808.
[60] R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Annu. Rev. Physiol., 64 (2002), pp. 355–405.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.