×

Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics. (English) Zbl 1353.53050

Summary: We consider a pseudo-Riemannian metric that changes signature along a smooth curve on a surface, called the discriminant curve. The discriminant curve separates the surface locally into a Riemannian and a Lorentzian domain. We study the local behaviour and properties of geodesics at a point on the discriminant where the isotropic direction is tangent to the discriminant curve.

MSC:

53C22 Geodesics in global differential geometry
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
53D25 Geodesic flows in symplectic geometry and contact geometry

References:

[1] Arnol’d, V.I.: Geometrical methods in the theory of ordinary differential equations. Springer-Verlag, New York (1988) · Zbl 0648.34002 · doi:10.1007/978-3-662-11832-0
[2] Anosov, D.V., Arnold, V.I. (eds.): Dynamical systems I. Ordinary differential equations and smooth dynamical systems. Encyclopaedia of Mathematical Sciences 1. Springer-Verlag (1988) · Zbl 0658.00008
[3] Basto-Gonçalves, J.: Linearization of resonant vector fields. Trans. Amer. Math. Soc. 362, 6457-6476 (2010) · Zbl 1221.32015 · doi:10.1090/S0002-9947-2010-04978-5
[4] Chen, K.T.: Equivalence and decomposition of vector fields about an elementary critical point. Am. J. Math. 85, 693-722 (1963) · Zbl 0119.07505 · doi:10.2307/2373115
[5] Cibrario, M.: Sulla reduzione a forma delle equationi lineari alle derviate parziale di secondo ordine di tipo misto. Accademia di Scienze e Lettere, Instituto Lombardo Redicconti 65, 889-906 (1932) · Zbl 0005.35601
[6] Dara, L.: Singularités générique des équations différentielles multiformes. Bol. Soc. Bras. Math. 6, 95-128 (1975) · Zbl 0405.34045 · doi:10.1007/BF02584779
[7] Davydov, A.A.: The normal form of a differential equation, that is not solved with respect to the derivative, in the neighborhood of its singular point. Funktsional. Anal. i Prilozhen. 19, 1-10 (1985) · Zbl 0582.34056 · doi:10.1007/BF01078387
[8] Davydov, A.A.: Qualitative theory of control systems. Translations of Mathematical Monographs, 141st edn. AMS, Providence, RI (1994) · Zbl 0830.93002
[9] Davydov, A.A., Ishikawa, G., Izumiya, S., Sun, W.-Z.: Generic singularities of implicit systems of first order differential equations on the plane. Jpn. J. Math. 3, 93-119 (2008) · Zbl 1183.37089 · doi:10.1007/s11537-008-0664-4
[10] Genin, D., Khesin, B., Tabachnikov, S.: Geodesics on an ellipsoid in Minkowski space. Enseign. Math. 53, 307-331 (2007) · Zbl 1144.37013
[11] Ghezzi, R., Remizov, A.O.: On a class of vector fields with discontinuities of divide-by-zero type and its applications to geodesics in singular metrics. J. Dyn. Control Syst. 18, 135-158 (2012) · Zbl 1284.37016 · doi:10.1007/s10883-012-9137-4
[12] Hartman, Ph: Ordinary differential equations. Mass, Birkhauser, Boston (1982) · Zbl 0476.34002
[13] Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. Lecture Notes in Mathematics, 583rd edn. Springer-Verlag, Berlin-NewYork (1977) · Zbl 0355.58009 · doi:10.1007/BFb0092042
[14] Izumiya, S., Tari, F.: Apparent contours in Minkowski 3-space and first order ordinary differential equations. Nonlinearity 26, 911-932 (2013) · Zbl 1268.53010 · doi:10.1088/0951-7715/26/4/911
[15] Izumiya, S., Tari, F.: Self-adjoint operators on surfaces with a singular metric. J. Dyn. Control Syst. 16, 329-353 (2010) · Zbl 1203.53020 · doi:10.1007/s10883-010-9096-6
[16] Khesin, B., Tabachnikov, S.: Pseudo-Riemannian geodesics and billiards. Adv. Math. 221, 1364-1396 (2009) · Zbl 1173.37037 · doi:10.1016/j.aim.2009.02.010
[17] Kossowski, M.: Pseudo-Riemannian metrics singularities and the extendability of parallel transport. Proc. Amer. Math. Soc. 99, 147-154 (1987) · Zbl 0629.53021 · doi:10.1090/S0002-9939-1987-0866445-4
[18] Kossowski, M., Kriele, M.: Smooth and discontinuous signature type change in general relativity. Class. Quantum Grav. 10, 2363-2371 (1993) · Zbl 0791.53064 · doi:10.1088/0264-9381/10/11/019
[19] Miernowski, T.: Formes normales d’une métrique mixte analytique réelle générique. Ann. Fac. Sci. Toulouse Math. 16, 923-946 (2007) · Zbl 1158.53029 · doi:10.5802/afst.1171
[20] Pavlova, N.G., Remizov, A.O.: Geodesics on hypersurfaces in theMinkowski space: singularities of signature change. Uspekhi Mat.Nauk 66 (2011), 193-194; translation in Russian Math. Surveys66 (2011), 1201-1203 · Zbl 1254.53071
[21] Pelletier, F.: Quelques propriétés géométriques des variétés pseudo-riemanniennes singulières. Ann. Fac. Sci. Toulouse Math. 4, 87-199 (1995) · Zbl 0861.32021 · doi:10.5802/afst.794
[22] Remizov, A.O.: Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature. Mat. Sb. 200(3), 75-94 (2009) · Zbl 1169.53318 · doi:10.4213/sm5151
[23] Remizov, A.O.: On the local and global properties of geodesics in pseudo-Riemannian metrics. Differential Geometry and its Applications 39, 36-58 (2015) · Zbl 1323.53036 · doi:10.1016/j.difgeo.2015.01.003
[24] Roussarie, R.: Modèles locaux de champs et de formes. Asterisque 30, 1-181 (1975) · Zbl 0327.57017
[25] Saloom, A., Tari, F.: Curves in the Minkowski plane and their contact with pseudo-circles. Geom. Dedicata 159, 109-124 (2012) · Zbl 1267.53011 · doi:10.1007/s10711-011-9649-1
[26] Samovol, V.S.: Equivalence of systems of differential equations in the neighborhood of a singular point. Trudy Moskov. Mat. Obshch. 44, 213-234 (1982) · Zbl 0526.34025
[27] Samovol, V.S.: A necessary condition for the local smooth linearization of a system of differential equations. Dokl. Akad. Nauk 351, 169-171 (1996) · Zbl 0898.34037
[28] Sell, G.: Smooth linearization near a fixed point. Am. J. Math. 107, 1035-1091 (1985) · Zbl 0574.34025 · doi:10.2307/2374346
[29] Steller, M.: A Gauss-Bonnet formula for metrics with varying signature. Z. Anal. Anwend. 25, 143-162 (2006) · Zbl 1101.53033 · doi:10.4171/ZAA/1282
[30] Sternberg, S.: On the structure of local homeomorphisms of Euclidean n-space II. Am. J. Math. 80, 623-631 (1958) · Zbl 0083.31406 · doi:10.2307/2372774
[31] Struik, D.J.: Lectures on classical differential geometry. Dover Publications, New York (1988) · Zbl 0697.53002
[32] Takens, F.: Partially hyperbolic fixed points. Topology 10, 133-147 (1971) · Zbl 0214.22901 · doi:10.1016/0040-9383(71)90035-8
[33] Tari, F.: Caustics of surfaces in the Minkowski 3-space. Q. J. Math. 63, 189-209 (2012) · Zbl 1235.53023 · doi:10.1093/qmath/haq030
[34] Tari, F.: Umbilics of surfaces in the Minkowski 3-space. J. Math. Soc. Japan 65, 723-731 (2013) · Zbl 1278.53017 · doi:10.2969/jmsj/06530723
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.