×

Level sets of asymptotic mean of digit function for 4-adic representation of real number. (English) Zbl 1363.28016

Let \(\alpha_i(x)\), \(i=1,2,\dots\), be the digits of a real number \(x\) in its 4-adic representation. The authors consider the asymptotic mean \[ v(x)=\lim\limits_{n\to \infty}\frac1n \sum\limits_{i=1}^n\alpha_i (x) \] and study topological, metric and fractal properties of the level sets \(S_\theta =\{ x:\;v(x)=\theta\}\) for the case where the asymptotic frequency \(v_j(x)\) of at least one digit does not exist. Here \[ v_j(x)=\lim\limits_{n\to \infty}n^{-1}\# \{ k:\;\alpha_k(x)=j,k\leq n\} \] for \(j=0,1,2,3\).

MSC:

28A80 Fractals
11A63 Radix representation; digital problems
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
PDF BibTeX XML Cite
Full Text: arXiv