×

zbMATH — the first resource for mathematics

Time-space adaptive method of time layers for the advective Allen-Cahn equation. (English) Zbl 1387.76061
Karasözen, Bülent (ed.) et al., Numerical mathematics and advanced applications – ENUMATH 2015. Selected papers based on the presentations at the European conference, Ankara, Turkey, September 14–18, 2015. Cham: Springer (ISBN 978-3-319-39927-0/hbk; 978-3-319-39929-4/ebook). Lecture Notes in Computational Science and Engineering 112, 175-183 (2016).
Summary: We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with a non-divergence-free velocity field. Numerical simulations for advection-dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
For the entire collection see [Zbl 1358.65003].
MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76Txx Multiphase and multicomponent flows
Software:
ROS3P
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] D. Arnold, F. Brezzi, B. Cockburn, L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001). doi:10.1137/S0036142901384162 · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[2] B. Ayuso, L.D. Marini, Discontinuous Galerkin methods for advection-diffusion- reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009). doi:10.1137/080719583 · Zbl 1205.65308 · doi:10.1137/080719583
[3] F.A. Bornemann, An adaptive multilevel approach to parabolic equations I. General theory and 1D-implementation. IMPACT Comput. Sci. Eng. 2, 279–317 (1990) · Zbl 0722.65055 · doi:10.1016/0899-8248(90)90016-4
[4] P. Deuflhard, M. Weiser, Adaptive Numerical Solution of PDEs. De Gruyter Textbook (Walter de Gruyter, Berlin, 2012) · Zbl 1268.65146 · doi:10.1515/9783110283112
[5] M. Frank, J. Lang, M. Schèafer, Adaptive finite element simulation of the time-dependent simplifiedP N equations. J. Sci. Comput. 49, 332–350 (2011). doi:10.1007/s10915-011-9466-6 · Zbl 1368.65191 · doi:10.1007/s10915-011-9466-6
[6] J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications. Lecture Notes in Computational Science and Engineering, vol. 16 (Springer, 2001). doi:10.1007/978-3-662-04484-1 · Zbl 0963.65102 · doi:10.1007/978-3-662-04484-1
[7] J. Lang, J. Verwer, ROS3P – an accurate third-order Rosenbrock solver designed for parabolic problems. BIT Numer. Math. 41, 731–738 (2001) · Zbl 0996.65099 · doi:10.1023/A:1021900219772
[8] J. Lang, A. Walter, An adaptive Rothe method for nonlinear reaction-diffusion system. 13, 135–146 (1993). doi:10.1016/0168-9274(93)90137-G · Zbl 0789.65075 · doi:10.1016/0168-9274(93)90137-G
[9] W. Liu, A. Bertozzi, T. Kolokolnikov, Diffuse interface surface tension models in an expanding flow. Commun. Math. Sci. 10, 387–418 (2012). doi:10.4310/CMS.2012.v10.n1.a16 · Zbl 1272.35025 · doi:10.4310/CMS.2012.v10.n1.a16
[10] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation (SIAM, 2008). doi:10.1137/1.9780898717440 · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[11] D. Schötzau, L. Zhu, A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59, 2236–2255 (2009). doi:10.1016/j.apnum.2008.12.014 · Zbl 1169.65108 · doi:10.1016/j.apnum.2008.12.014
[12] M. Uzunca, B. Karasözen, M. Manguoğlu, Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations. Comput. Chem. Eng. 68, 24–37 (2014). doi:10.1016/j.compchemeng.2014.05.002 · doi:10.1016/j.compchemeng.2014.05.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.