×

zbMATH — the first resource for mathematics

An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows. (English) Zbl 1351.86007
Summary: It is now becoming important to develop our capabilities to simulate coastal ocean flows involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales. This paper presents a hybrid modeling system for such simulation. The system consists of a fully three dimensional (3D) fluid dynamics model and a geophysical fluid dynamics model, which couple with each other in two-way and march in time simultaneously. Particularly, in the hybrid system, the solver for incompressible flow on overset meshes (SIFOM) resolves fully 3D small-scale local flow phenomena, while the unstructured grid finite volume coastal ocean model (FVCOM) captures large-scale background flows. The integration of the two models are realized via domain decomposition implemented with an overset grid method. Numerical experiments on performance of the system in resolving flow patterns and solution convergence rate show that the SIFOM-FVCOM system works as intended, and its solutions compare reasonably with data obtained with measurements and other computational approaches. Its unparalleled capabilities to predict multiphysics and multiscale phenomena with high-fidelity are demonstrated by three typical applications that are beyond the reach of other currently existing models. It is anticipated that the SIFOM-FVCOM system will serve as a new platform to study many emerging coastal ocean problems.

MSC:
86-08 Computational methods for problems pertaining to geophysics
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Robertson, I. N.; Riggs, H. R.; Yim, S. C.S.; Young, Y. L., Lessons from hurricane katrina storm surge on bridges and buildings, J. Waterw. Port Coast. Ocean Eng., 133, 463-483, (2007)
[2] CNN. gulf coast oil disaster
[3] Tang, H. S.; Kraatz, S.; Qu, K.; Chen, G. Q.; Aboobaker, N.; Jiang, C. B., High-resolution survey for tidal energy and influence of sea-level-rise: a case study at coast of new jersey, USA, Renew. Sustain. Energy Rev., 32, 960-982, (2014)
[4] BBC. gulf of Mexico oil leak ‘worst us environment disaster’, may 30, 2010
[5] Blumberg, A. F.; Mellor, G. L., A description of a three-dimensional coastal Ocean circulation model, (Heaps, N., Three-Dimensional Coastal Ocean Models, (1987), American Geophysical Union), 1-16
[6] Chen, C.; Liu, H.; Beardsley, R. C., An unstructured grid, finite-volume, three dimensional, primitive equation ocean model: application to coastal Ocean and estuaries, J. Atmos. Ocean. Technol., 20, 159-186, (2003)
[7] Halliwell, G. R., Evaluation of vertical coordinate and vertical mixing algorithms in the hybrid-coordinate Ocean model (HYCOM), Ocean Model., 7, 285-322, (2004)
[8] Haidvogel, D. B.; Arango, H.; Budgell, W. P.; Cornuelle, B. D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W. R.; Hermann, A. J.; Lanerolle, L.; Levin, J.; McWilliams, J. C.; Miller, A. J.; Moore, A. M.; Powell, T. M.; Shchepetkin, A. F.; Sherwood, C. R.; Signell, R. P.; Warner, J. C.; Wilkin, J., Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional Ocean modeling system, J. Comput. Phys., 227, 3595-3624, (2008) · Zbl 1132.86300
[9] Booij, N.; Ris, R. C.; Hoithuijsen, L. H., A third-generation wave model for coastal regions. I. model description and validation, J. Geophys. Res., 104, 7649-7666, (1999)
[10] H.L. Tolman, User manual and system documentation of WAVEWATCH III, Version 3.14, NOAA, National Weather Service, National Centers for Environmental Prediction, 2009.
[11] Heimusund, B.-O.; Berntsen, J., On a class of Ocean model instability that may occur when applying small time steps, implicit methods, and low viscosities, Ocean Model., 7, 135-144, (2004)
[12] Younis, B. A.; Teigen, P.; Przulj, V. P., Estimating the hydrodynamic forces on a mini TLP with computational fluid dynamics and design-code techniques, Ocean Eng., 28, 585-602, (2001)
[13] Kang, S.; Borazjani, I.; Colby, J. A.; Sotiropoulos, F., Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine, Adv. Water Resour., 39, 33-43, (2012)
[14] Tang, H. S.; Paik, J.; Sotiropoulos, F.; Khangaokar, T., Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations, ASCE J. Hydraul. Eng., 134, 1210-1224, (2008)
[15] Dolbow, J.; Khaleel, M. A.; Mitchell, J., Multiscale mathematics, initiative: a roadmap, (2004), PNNL-14966
[16] Hill, C.; DeLuca, C.; Balaji, V.; Suarez, M.; da Silva, A., The architecture of the Earth system modeling framework, Comput. Sci. Eng., 6, 18-28, (2004)
[17] Fringer, O. R.; McWilliams, J. C.; Street, R. L., A new hybrid model for coastal simulation, Oceanography, 19, 64-77, (2006)
[18] Tang, H. S.; Keen, T. R.; Khanbilvardi, R., A model-coupling framework for nearshore waves, currents, sediment transport, and seabed morphology, Commun. Nonlinear Sci. Numer. Simul., 14, 2935-2947, (2009)
[19] Tang, H. S.; Wu, X. G., Multi-scale coastal flow simulation using coupled CFD and GFD models, (Swayne, David A.; Yang, Wanhong; Voinov, A. A.; Rizzoli, A.; Filatova, T., Modelling for Environment’s Sake, Fifth Biennial Meeting, July 5-8, Ottawa, Canada, (2010))
[20] Campbell, T.; Allard, R.; Preller, R.; Smedstad, L.; Wallcraft, A.; Chen, S.; Jin, H.; Gabersek, S.; Hodur, R.; Reich, J.; Fry, C. D.; Eccles, V.; Cheng, H. P.; Cheng, J. R.C.; Hunter, R.; DeLuca, C.; Theurich, G., Integrated modeling of the battlespace environment, Comput. Sci. Eng., 12, 36-45, (2010)
[21] Schwarz, H. A., Über einige abbildungsaufgaben, Ges. Abh., 1, 65-83, (1869)
[22] J.A. Benek, J.L. Steger, F.C. Dougherly, A exible grid embedding technique with application to the Euler equations, AIAA 83-1944.
[23] Rai, M. M., A conservative treatment of zonal boundary scheme for Euler equations calculations, J. Comput. Phys., 62, 472-503, (1986) · Zbl 0619.65085
[24] Wright, J.; Shyy, W., A pressure-based composite grid method for Navier-Stokes equations, J. Comput. Phys., 107, 225-238, (1993) · Zbl 0777.76065
[25] Chesshire, G.; Henshaw, W. D., Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys., 90, 1-64, (1990) · Zbl 0709.65090
[26] Pärt, E.; Sjogreen, B., Conservative and non-conservative interpolation between overlapping grids for finite volume solutions of hyperbolic problems, Comput. Fluids, 23, 551-574, (1994) · Zbl 0813.76071
[27] Tang, H. S.; Zhang, D. L.; Lee, C. H., Comments on algorithms for grid interfaces in simulating Euler flows, Commun. Nonlinear Sci. Numer. Simul., 1, 50-54, (1996)
[28] Tang, H. S.; Zhou, T., On non-conservative algorithms for grid interfaces, SIAM J. Numer. Anal., 37, 173-193, (1999) · Zbl 0948.65087
[29] Berger, M. J., On conservation at grid interfaces, SIAM J. Numer. Anal., 24, 967-984, (1987) · Zbl 0633.65086
[30] Chesshire, G. S.; Henshaw, W. D., A scheme for conservative interpolation on overlapping grids, SIAM J. Sci. Comput., 15, 4, 819-845, (1994) · Zbl 0805.65086
[31] Wang, Z. J., A fully conservative interface algorithm for overlapped grids, J. Comput. Phys., 122, 96-106, (1995) · Zbl 0835.76081
[32] B. Hubbard, H.-C. Chen, A Chimera scheme for incompressible viscous flows with application to submarine hydrodynamics, AIAA 94-2210, 1994.
[33] Tang, H. S.; Jones, C.; Sotiropoulos, F., An overset grid method for 3d unsteady incompressible flows, J. Comput. Phys., 191, 567-600, (2003) · Zbl 1134.76435
[34] Tang, H. S., Study on a grid interface algorithm for solutions of incompressible Navier-Stokes equations, Comput. Fluids, 35, 1372-1383, (2006) · Zbl 1177.76266
[35] Xu, K. L.; Sun, G., Assessment of an interface conservative algorithm MFBI in a Chimera grid flow solver for multi-element airfoils, (Proceedings of the World Congress on Engineering 2009, vol. II, London, UK, (2009)), 1702-1706
[36] Craft, T.; Iacovides, H.; Skillen, A., A new overset grid algorithm applied to the simulation of flows involving complex geometries, (Conference on Modelling Fluid Flow (CMFF’12) The 15th International Conference on Fluid Flow Technologies, Budapest, Hungary, (September 2012)), 4-7
[37] Oey, L.; Chen, P., A nested-grid ocean model: with application to the simulation of meanders and eddies in the Norwegian coastal current, J. Geophys. Res., 97, 20063-20086, (1992)
[38] Sheng, J. Y.; Tang, L. Q., A two-way nested-grid Ocean-circulation model for the meso-American barrier reef system, Ocean Dyn., 54, 232-242, (2004)
[39] Hermann, A. J.; Haidvogel, D. B.; Dobbins, E. L.; Staberno, P. J., Coupling global and regional circulation models in the coastal gulf of alaska, Prog. Oceanogr., 53, 335-367, (2002)
[40] Fujima, K.; Masamura, K.; Goto, C., Development of the 2D/3D hybrid model for tsunami numerical simulation, Coast. Eng. J., 44, 373-397, (2002)
[41] Tang, H. S.; Kraatz, S.; Wu, X. G.; Cheng, W. L.; Qu, K.; Polly, J., Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: method, implementation, and experiment, Ocean Eng., 62, 56-67, (2013)
[42] Wu, X. G.; Tang, H. S., Coupling of CFD model and FVCOM to predict small-scale coastal flows, J. Hydrodyn., 22, 284-289, (2010)
[43] Sotiropoulos, F.; Abdallah, S., The discrete continuity equation in primitive-variable solutions of incompressible flow, J. Comput. Phys., 95, 212-227, (1991) · Zbl 0725.76058
[44] Lin, F. B.; Sotiropoulos, F., Assessment of artificial dissipation models for three-dimensional incompressible flows, Trans. ASME J. Fluids Eng., 119, 331-340, (1997)
[45] Ge, L.; Sotiropoulos, F., 3D unsteady RANS modeling of complex hydraulic engineering flows. I: numerical model, J. Hydraul. Eng., 131, 800-808, (2005)
[46] Paik, J.; Eghbalzadeh, A.; Sotiropoulos, F., Three-dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains, J. Hydraul. Eng., 135, 505-521, (2009)
[47] Lai, Z.; Chen, C.; Cowles, G.; Beardsley, R. C., A non-hydrostatic version of FVCOM, part I: validation experiments, J. Geophys. Res., Oceans, 115, C11010, (2010)
[48] Kundu, P. K., Fluid mechanics, (1990), Academic Press, Inc. · Zbl 0780.76001
[49] Shih, L. H.; Koseff, J. R.; Ivey, G. N.; Ferziger, J. H., Parametrization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations, J. Fluid Mech., 525, 193-214, (2005) · Zbl 1065.76108
[50] Paik, J.; Sotiropoulos, F., Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel, Phys. Fluids, 17, 115104, (2005) · Zbl 1188.76118
[51] Casulli, V., A semi-implicit finite difference method for non-hydrostatic, free-surface flows, Int. J. Numer. Methods Fluids, 30, 425-440, (1999) · Zbl 0944.76050
[52] Tang, H. S.; Qu, K.; Wu, X. G.; Zhang, Z. K., Domain decomposition for a hybrid fully 3D fluid dynamics and geophysical fluid dynamics modeling system: a numerical experiment on a transient sill flow, (22nd International Conference on Domain Decomposition Methods, DD22, Lugano, Switzerland, Sept., 2013, Lect. Notes Comput. Sci. Eng., (2014), Springer), submitted for publication · Zbl 1384.86006
[53] Sotiropoulos, F.; Ventikos, Y., The three-dimensional structure of confined swirling flows with vortex breakdown, J. Fluid Mech., 426, 155-175, (2001) · Zbl 0979.76018
[54] Ge, L.; Dasi, L. P.; Sotiropoulos, F.; Yoganathan, A. P., Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses, Ann. Biomed. Eng., 36, 276-297, (2008)
[55] Ge, L.; Lee, S.; Sotiropoulos, F.; Sturm, T. W., 3D unsteady RANS modeling of complex hydraulic engineering flows. II: model validation and flow physics, J. Hydraul. Eng., 131, 809-820, (2005)
[56] Chen, C. S.; Beardsley, R. C.; Cowles, G., FVCOM, user manual, (2006), SMAST/UMASSD-06-0602
[57] Mellor, G. L.; Yamada, T., A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791-1806, (1974)
[58] Gustafsson, B., The convergence rate for difference approximations to general mixed initial boundary value problem, SIAM J. Numer. Anal., 18, 179-190, (1981) · Zbl 0469.65068
[59] Xing, J. X.; Davies, A. M., On the importance of non-hydrostatic processes in determining tidally induced mixing in sill regions, Cont. Shelf Res., 27, 2162-2185, (2007)
[60] Tang, H. S., Numerical simulation of unsteady three dimensional incompressible flows in complex geometries, (2001), School of Civil and Environmental Engineering, Georgia Institute of Technology, Ph.D. dissertation
[61] van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 870-891, (1986) · Zbl 0594.76023
[62] Tang, H. S.; Sotiropoulos, F., Fractional step artificial compressibility method for Navier-Stokes equations, Comput. Fluids, 36, 974-986, (2007) · Zbl 1194.76186
[63] Doneker, R. L.; Jirka, G. H., Cormix user manual: a hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. EPA-823-K-07-001, (2007)
[64] Sullivan, M., Cause of bridge failures from 1966 to 2005, (2006), NYSDOT Region 1 Report
[65] Board, Transportation Research, Potential impacts of climate change on U.S. transportation, (2008), TRB Washington, DC, Special Report 290
[66] Ngdc
[67] New, A. L.; Pingree, R. D., Evidence for internal tidal mixing near the shelf break in the bay of biscay, Deep-Sea Res., 37, 1783-1803, (1990)
[68] Ibragimov, R. N., Generation of internal tides by an oscillating background flow along a corrugated slope, Phys. Scr., 78, 065801, (2008)
[69] Pain, C. C.; Piggott, M. D.; Goddard, A. J.H.; de Oliveira, C. R.E.; Umpleby, A. P., A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. part II: model validation, Mon. Weather Rev., 132, 2832-2844, (2004)
[70] Hunt, C. D.; Mansfield, A. D.; Mickelson, M. J.; Albro, C. S.; Geyer, W. R.; Roberts, P. J.W., Plume tracking and dilution of effluent from the Boston sewage outfall, Mar. Environ. Res., 70, 150-161, (2010)
[71] Roberts, D. A.; Johnston, E. L.; Knott, N. A., Impacts of desalination plant discharges on the marine environment: a critical review of published studies, Water Res., 44, 5117-5128, (2010)
[72] Mariano, A. J.; Kourafalou, V. H.; Srinivasan, A.; Kang, H.; Halliwell, G. R.; Ryan, E. H.; Roffer, M., On the modeling of the 2010 gulf of Mexico oil spill, Dyn. Atmos. Ocean., 52, 1-2, 322-340, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.