zbMATH — the first resource for mathematics

Multilevel Monte Carlo simulation of Coulomb collisions. (English) Zbl 1351.82085
Summary: We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau-Fokker-Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy \(\varepsilon\), the computational cost of the method is \(\mathcal{O}(\varepsilon^{- 2})\) or \(\mathcal{O}(\varepsilon^{- 2}(\ln \varepsilon)^2)\), depending on the underlying discretization, Milstein or Euler-Maruyama respectively. This is to be contrasted with a cost of \(\mathcal{O}(\varepsilon^{- 3})\) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for \(\varepsilon = 10^{- 5}\). We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82D10 Statistical mechanical studies of plasmas
Full Text: DOI
[1] Koh, S.; Chang, C.; Ku, S.; Menard, J.; Weitzner, H.; Choe, W., Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry, Phys. Plasmas, 19, 72505, (2012)
[2] Park, G.; Chang, C.; Joseph, I.; Moyer, R., Plasma transport in stochastic magnetic field caused by vacuum resonant magnetic perturbations at diverted tokamak edge, Phys. Plasmas, 17, 102503, (2010)
[3] Cohen, B.; Divol, L.; Langdon, A.; Williams, E., Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering, Phys. Plasmas, 13, 022705, (2006)
[4] Bosch, R.; Berger, R.; Failor, B.; Delamater, N.; Charatis, G.; Kauffman, R., Collision and interpenetration of plasmas created by laser-illuminated disks, Phys. Fluids, B Plasma Phys., 4, 979-988, (1992)
[5] Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T., Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J., 182, 310-377, (2009)
[6] Tatsuno, T.; Dorland, W.; Schekochihin, A.; Plunk, G.; Barnes, M.; Cowley, S.; Howes, G., Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence, Phys. Rev. Lett., 103, 15003, (2009)
[7] Giles, M., Multilevel Monte Carlo path simulation, Oper. Res., 56, 607-617, (2008) · Zbl 1167.65316
[8] Giles, M., Multilevel Monte Carlo methods, (Monte Carlo and Quasi-Monte Carlo Methods 2012, (2013))
[9] Bungartz, H.-J.; Griebel, M., Sparse grids, Acta Numer., 13, 147-269, (2004) · Zbl 1122.65405
[10] Heinrich, S., Monte Carlo complexity of global solution of integral equations, J. Complex., 14, 151-175, (1998) · Zbl 0920.65090
[11] Heinrich, S., Multilevel Monte Carlo methods, (Large-Scale Scientific Computing, (2001), Springer), 58-67 · Zbl 1031.65005
[12] Landau, L., Kinetic equation for the Coulomb effect, Phys. Z. Sowjetunion, 10, 154, (1936)
[13] Höök, L. J., Numerical solution of quasilinear kinetic diffusion equations in toroidal plasmas, (2013), KTH, Fusion Plasma Physics, PhD thesis
[14] Caflisch, R. E., Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 1998, 1-49, (1998) · Zbl 0949.65003
[15] Thomas, A.; Tzoufras, M.; Robinson, A.; Kingham, R.; Ridgers, C.; Sherlock, M.; Bell, A., A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma, J. Comput. Phys., 231, 1051-1079, (2012) · Zbl 1385.76015
[16] Ricketson, L.; Rosin, M.; Caflisch, R.; Dimits, A., An entropy based thermalization scheme for hybrid simulations of Coulomb collisions, 273, 77-99, (2013) · Zbl 1351.82107
[17] Takizuka, T.; Abe, H., A binary collision model for plasma simulation with a particle code, J. Comput. Phys., 25, 205-219, (1977) · Zbl 0403.76091
[18] Nanbu, K., Theory of cumulative small-angle collisions in plasmas, Phys. Rev. E, 55, 4642-4652, (1997)
[19] Bobylev, A. V.; Potapenko, I., Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas, J. Comput. Phys., 246, 123, (2013) · Zbl 1349.82071
[20] Bobylev, A.; Nanbu, K., Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Phys. Rev. E, 61, 4576-4586, (2000)
[21] Wang, C.; Lin, T.; Caflisch, R.; Cohen, B.; Dimits, A., Particle simulation of Coulomb collisions: comparing the methods of takizuka & abe and nanbu, J. Comput. Phys., 227, 4308-4329, (2008) · Zbl 1388.82032
[22] Dimarco, G.; Caflisch, R.; Pareschi, L., Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas, (2010) · Zbl 1329.82123
[23] Ivanov, M.; Shvets, V., The use of the particle method to simulate a collisional plasma, Dokl. Akad. Nauk SSSR, 238, 1324-1327, (1978)
[24] Ivanov, M.; Shvets, V., The method of stochastic differential equations for computing the kinetics of a plasma with collisions, USSR Comput. Math. Math. Phys., 20, 146-155, (1980)
[25] Painter, S., Data-parallel algorithms for Monte Carlo simulation of neoclassical transport in magnetically confined plasmas, Comput. Phys. Commun., 77, 342-356, (1993)
[26] Jones, M. E.; Lemons, D. S.; Mason, R. J.; Thomas, V. A.; Winske, D., A grid-based Coulomb collision model for PIC codes, J. Comput. Phys., 123, 169-181, (1996) · Zbl 0840.76071
[27] Manheimer, W. M.; Lampe, M.; Joyce, G., Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584, (1997) · Zbl 0902.76081
[28] Dettrick, S.; Gardner, H.; Painter, S., Monte Carlo transport simulation techniques for stellarator fusion experiments, Aust. J. Phys., 52, 715-732, (1999)
[29] Sherlock, M., A Monte-Carlo method for Coulomb collisions in hybrid plasma models, J. Comput. Phys., 227, 2286-2292, (2008) · Zbl 1132.76044
[30] Lemons, D.; Winske, D.; Daughton, W.; Albright, B., Small-angle Coulomb collision model for particle-in-cell simulations, J. Comput. Phys., 228, 1391-1403, (2009) · Zbl 1157.76059
[31] Cohen, B. I.; Dimits, A. M.; Friedman, A.; Caflisch, R. E., Time-step considerations in particle simulation algorithms for Coulomb collisions in plasmas, IEEE Trans. Plasma Sci., 38, 2394-2406, (2010)
[32] Qiang, J.; Ryne, R. D.; Habib, S., Self-consistent Langevin simulation of Coulomb collisions in charged-particle beams, (Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, (2000), IEEE Computer Society), 27, (CDROM)
[33] Velasco, J.; Bustos, A.; Castejón, F.; Fernández, L.; Martin-Mayor, V.; Tarancón, A., ISDEP: integrator of stochastic differential equations for plasmas, Comput. Phys. Commun., 183, 1877-1883, (2012) · Zbl 1302.82005
[34] Cadjan, M.; Ivanov, M., Stochastic approach to laser plasma kinetics with Coulomb collisions, Phys. Lett. A, 236, 227-231, (1997)
[35] Cadjan, M.; Ivanov, M., Langevin approach to plasma kinetics with Coulomb collisions, J. Plasma Phys., 61, 89-106, (1999)
[36] Dimits, A.; Cohen, B.; Caflisch, R.; Rosin, M.; Ricketson, L., Higher-order time integration of Coulomb collisions in a plasma using Langevin equations, J. Comput. Phys., 242, 561-580, (2013) · Zbl 1299.76317
[37] Giles, M., Improved multilevel Monte Carlo convergence using the milstein scheme, (Monte Carlo and Quasi-Monte Carlo Methods 2006, (2008)), 343-358 · Zbl 1141.65321
[38] Creutzig, J.; Dereich, S.; Müller-Gronbach, T.; Ritter, K., Infinite-dimensional quadrature and approximation of distributions, Found. Comput. Math., 9, 391-429, (2009) · Zbl 1177.65011
[39] Rosenbluth, M. N.; MacDonald, W. M.; Judd, D. L., Fokker-Planck equation for an inverse-square force, Phys. Rev., 107, 1, (1957) · Zbl 0077.44802
[40] Van Kampen, N. G., Stochastic processes in physics and chemistry, vol. 1, (1992), North Holland · Zbl 0511.60038
[41] Kloeden, P. E.; Platen, E., Numerical solution of stochastic differential equations, vol. 23, (1992), Springer-Verlag · Zbl 0925.65261
[42] Einstein, A., Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen, Ann. Phys., 322, 549-560, (1905) · JFM 36.0975.01
[43] Giles, M. B.; Szpruch, L., Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation, (2012) · Zbl 1373.65007
[44] Lévy, P., Wiener’s random function, and other Laplacian random functions, (Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, (1951)), 171-187
[45] Gaines, J. G.; Lyons, T. J., Variable step size control in the numerical solution of stochastic differential equations, SIAM J. Appl. Math., 57, 1455-1484, (1997) · Zbl 0888.60046
[46] Gaines, J. G.; Lyons, T. J., Random generation of stochastic area integrals, SIAM J. Appl. Math., 54, 1132-1146, (1994) · Zbl 0805.60052
[47] Mezzadri, F., How to generate random matrices from the classical compact groups, Not. Am. Math. Soc., 54, 592-604, (2007) · Zbl 1156.22004
[48] Cohen, B. I.; Dimits, A. M.; Strozzi, D. J., A grid-based binary model for Coulomb collisions in plasmas, J. Comput. Phys., 234, 33-43, (2013)
[49] Trubnikov, B., Rev. Plasma Phys., 1, (1965)
[50] Hoel, H.; Von Schwerin, E.; Szepessy, A.; Tempone, R., Adaptive multilevel Monte Carlo simulation, (Numerical Analysis of Multiscale Computations, (2012), Springer), 217-234 · Zbl 1245.65002
[51] Giles, M. B.; Waterhouse, B. J., Multilevel quasi-Monte Carlo path simulation, (Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics, (2009)), 165-181 · Zbl 1181.91335
[52] Gerstner, T.; Noll, M., Randomized multilevel quasi-Monte Carlo path simulation, (2013), World Scientific · Zbl 1277.91192
[53] Ricketson, L., Three improvements to multi-level Monte Carlo simulation of SDE systems, (2013)
[54] Giles, M. B.; Szpruch, L., Antithetic multilevel Monte Carlo estimation for multidimensional sdes, (Monte Carlo and Quasi-Monte Carlo Methods 2012, (2013), Springer), 367-384 · Zbl 1302.65026
[55] McKean, H. P., Propagation of chaos for a class of non-linear parabolic equations, (Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7), (1967), Catholic Univ.), 41-57
[56] Méléard, S., Asymptotic behaviour of some interacting particle systems; Mckean-Vlasov and Boltzmann models, (Probabilistic Models for Nonlinear Partial Differential Equations, (1996), Springer), 42-95 · Zbl 0864.60077
[57] Hirvijoki, E.; Brizard, A.; Snicker, A.; Kurki-Suonio, T., Monte Carlo implementation of a guiding-center Fokker-Planck kinetic equation, Phys. Plasmas, 20, (2013)
[58] Giles, M. B.; Higham, D. J.; Mao, X., Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff, Finance Stoch., 13, 403-413, (2009) · Zbl 1199.65008
[59] Avikainen, R., On irregular functionals of SDEs and the Euler scheme, Finance Stoch., 13, 381-401, (2009) · Zbl 1199.60198
[60] Cercignani, C., The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, (1988), Springer-Verlag · Zbl 0646.76001
[61] Hammett, G. W.; Perkins, F. W., Fluid moment models for Landau damping with application to the ion-temperature-gradient instability, Phys. Rev. Lett., 64, 3019-3022, (1990)
[62] M. Giles, T. Nagapetyan, K. Ritter, Multi-level Monte Carlo approximation of distribution functions and densities, Preprint 157, 2014. · Zbl 1322.65014
[63] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149, 201-220, (1999) · Zbl 0934.76073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.