×

zbMATH — the first resource for mathematics

A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. (English) Zbl 1351.76157
Summary: The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen an increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. The current generation of RMHD codes does not have any particularly good strategy for avoiding such an unphysical situation. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The methods presented here are very general and should apply to other PDE systems where physical realizability is most easily asserted in the primitive variables. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we show that similar advances extend to RMHD. As a result, the face-centered magnetic fields can be evolved much more accurately using the edge-centered electric fields in the corrector step. Those edge-centered electric fields come from a multidimensional Riemann solver for RMHD which we present in this paper. The overall update results in a one-step, fully conservative scheme that is suited for AMR. In this paper we also develop several new test problems for RMHD. We show that RMHD vortices can be designed that propagate on the computational mesh as self-preserving structures. These RMHD vortex test problems provide a means to do truly multidimensional accuracy testing for RMHD codes. Several other stringent test problems are presented. We show the importance of resolution in certain test problems. Our tests include a demonstration that RMHD vortices are stable when they interact with shocks.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abgrall, R., Approximation du problème de Riemann vraiment multidimensionnel des équations d’Euler par une méthode de type roe, I: la linéarisation, C.R. Acad. Sci. Ser. I, 319, 499, (1994) · Zbl 0813.76074
[2] Abgrall, R., Approximation du problème de Riemann vraiment multidimensionnel des équations d’Euler par une méthode de type roe, II: solution du problème de Riemann approché, C.R. Acad. Sci. Ser. I, 319, 625, (1994) · Zbl 0813.76075
[3] Aloy, M. A.; Ibanez, J. M.; Marti, J. M., GENESIS: a high resolution code for three-dimensional general relativistic hydrodynamics, Astrophys. J. Suppl., 166, 122-151, (1999)
[4] Anton, L.; Miralles, J. A.; Marti, J. M.; Ibanez, J. M.; Aloy, J. M.; Mimica, P., Relativistic MHD: renormalized eigenvectors and full wave decomposition Riemann solver, Astrophys. J. Suppl., 188, 1, (2010)
[5] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292, (1999) · Zbl 0936.76051
[6] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452, (2000) · Zbl 0961.65078
[7] Balsara, D. S., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl., 132, 83-101, (2001)
[8] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174, 614-648, (2001) · Zbl 1157.76369
[9] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl., 151, 149-184, (2004)
[10] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056, (2009) · Zbl 1280.76030
[11] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480, (2009) · Zbl 1275.76169
[12] Balsara, D. S., Multidimensional HLLE Riemann solver, application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993, (2010) · Zbl 1303.76140
[13] Balsara, D. S., Self-adjusting positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517, (2012)
[14] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503, (2012) · Zbl 1284.76261
[15] Balsara, D. S.; Dumbser, M.; Meyer, C.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamic flow on structured meshes - comparison with Runge-Kutta methods, J. Comput. Phys., 235, 934-969, (2013) · Zbl 1291.76237
[16] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLL and HLLC Riemann solvers for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208, (2014) · Zbl 1349.76426
[17] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure - part I - application to hyperbolic conservation laws on structured meshes, J. Comput. Phys., 277, 163-200, (2014) · Zbl 1349.76303
[18] Balsara, D. S.; Dumbser, M., Multidimensional Riemann problem with self-similar internal structure - part II - application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys., 287, 269-292, (2015) · Zbl 1351.76091
[19] Balsara, D. S.; Dumbser, M., Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 299, 687-715, (2015) · Zbl 1351.76092
[20] Balsara, D. S., Three dimensional HLL Riemann solver for structured meshes; application to Euler and MHD flow, J. Comput. Phys., 295, 1-23, (2015) · Zbl 1349.76584
[21] Balsara, D. S.; Vides, J.; Gurski, K.; Nkonga, B.; Dumbser, M.; Garain, S.; Audit, E., A two-dimensional Riemann solver with self-similar sub-structure - alternative formulation based on least squares projection, J. Comput. Phys., 304, 138-161, (2016) · Zbl 1349.76157
[22] Balsara, D. S.; Amano, T.; Garain, S.; Kim, J., High order accuracy divergence-free scheme for the electrodynamics of relativistic plasmas with multidimensional Riemann solvers, J. Comput. Phys., (2016), submitted
[23] Balsara, D. S.; Nkonga, B.; Dumbser, M.; Munz, C.-D., Formulating multidimensional Riemann solvers in similarity variables - part III: a multidimensional analogue of the HLLEM Riemann solver for conservative hyperbolic systems, J. Comput. Phys., (2016), in preparation
[24] Barth, T. J.; Frederickson, P. O., Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, (28th Aerospace Sciences Meeting, (January 1990)), AIAA Paper No. 90-0013
[25] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570, (1997) · Zbl 0992.65088
[26] Boscheri, W.; Balsara, D. S.; Dumbser, M., Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J. Comput. Phys., 267, 112-138, (2014) · Zbl 1349.76309
[27] Boscheri, W.; Dumbser, M.; Balsara, D. S., High order Lagrangian ADER-WENO schemes on unstructured meshes - application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 76, 10, 737-778, (2014)
[28] Brio, M.; Zakharian, A. R.; Webb, G. M., Two-dimensional Riemann solver for Euler equations of gas dynamics, J. Comput. Phys., 167, 177-195, (2001) · Zbl 1043.76042
[29] Colella, P.; Woodward, P., The piecewise parabolic method (PPM) for gas dynamical simulations, J. Comput. Phys., 54, 174-201, (1984) · Zbl 0531.76082
[30] Colella, P.; Sekora, J., A limiter for PPM that preserves accuracy at smooth extrema, J. Comput. Phys., 227, 7069-7076, (2008) · Zbl 1152.65090
[31] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows, Astron. Astrophys., 400, 397-413, (2003) · Zbl 1222.76122
[32] Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P., ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys., 473, 11, (2007)
[33] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[34] Dumbser, M.; Castro, M.; Pares, C.; Toro, E. F., ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[35] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70, 88, (2011) · Zbl 1220.65110
[36] Dumbser, M.; Balsara, D. S., A new, efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319, (2016) · Zbl 1349.76603
[37] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 2.3, 294-318, (1988) · Zbl 0642.76088
[38] Einfeldt, B.; Munz, C.-D.; Roe, P. L.; Sjogreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295, (1991) · Zbl 0709.76102
[39] Etienne, Z. B.; Paschalidis, V.; Haas, R.; Mösta, P.; Shapiro, S. L., Illinoisgrmhd: an open-source, user-friendly GRMHD code for dynamical spacetimes, Class. Quantum Gravity, 32, 17, (2015) · Zbl 1327.83153
[40] Fey, M., Multidimensional upwinding 1. the method of transport for solving the Euler equations, J. Comput. Phys., 143, 159, (1998) · Zbl 0932.76050
[41] Fey, M., Multidimensional upwinding 2. decomposition of the Euler equation into advection equation, J. Comput. Phys., 143, 181, (1998) · Zbl 0932.76051
[42] Gammie, C. F.; McKinney, J. C.; Tóth, G., HARM: a numerical scheme for general relativistic magnetohydrodynamics, Astrophys. J., 589, 444, (2003)
[43] Gardiner, T.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509, (2005) · Zbl 1087.76536
[44] Gardiner, T.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport in three dimensions, J. Comput. Phys., 227, 4123, (2008) · Zbl 1317.76057
[45] Giacomazzo, B.; Rezzolla, L., Whiskymhd: a new numerical code for general relativistic magnetohydrodynamics, Class. Quantum Gravity, 24, 12, S235-S258, (2007) · Zbl 1117.83002
[46] Giacomazzo, B.; Rezzolla, L., The exact solution of the Riemann problem in relativistic magnetohydrodynamics, J. Fluid Mech., 562, 223-259, (2006) · Zbl 1097.76073
[47] Gilquin, H.; Laurens, J.; Rosier, C., Multidimensional Riemann problems for linear hyperbolic systems, Notes Numer. Fluid Mech., 43, 284, (1993) · Zbl 0921.35090
[48] Gurski, K. F., An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM J. Sci. Comput., 25, 2165, (2004) · Zbl 1133.76358
[49] Honkkila, V.; Janhunen, P., HLLC solver for relativistic MHD, J. Comput. Phys., 223, 643-656, (2007) · Zbl 1111.76036
[50] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[51] Kim, J.; Balsara, D. S., A stable HLLC Riemann solver for relativistic magnetohydrodynamics, J. Comput. Phys., 270, 634-639, (2014) · Zbl 1349.76618
[52] Komissarov, S. S., A Godunov-type scheme for relativistic MHD, Mon. Not. R. Astron. Soc., 303, 343, (1999)
[53] Komissarov, S. S., On some recent developments in numerical methods for relativistic MHD, AIP Conf. Proc., 856, 129, (2006)
[54] Li, S.-T., An HLLC Riemann solver for magnetohydrodynamics, J. Comput. Phys., 203, 344, (2005) · Zbl 1299.76302
[55] Meadows, K. R.; Kumar, A.; Hussaini, M. Y., A computational study of the interaction between a vortex and a shock wave, (1989), AIAA Paper 89-1043
[56] McCorquodale, P.; Colella, P., A high order finite volume method for conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci., 6, 1, 1, (2011) · Zbl 1252.65163
[57] McKinney, J. C.; Tchekhovskoy, A.; Sadowski, A.; Narayan, R., Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure, Mon. Not. R. Astron. Soc., 441, 3177-3208, (2014)
[58] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows II - magnetohydrodynamics, Mon. Not. R. Astron. Soc., 368, 1040, (2006)
[59] Mignone, A.; Ugliano, M.; Bodo, G., A five-wave HLL Riemann solver for relativistic MHD, Mon. Not. R. Astron. Soc., 393, 1141, (2009)
[60] Miyoshi, T.; Kusano, K., A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 208, 315-344, (2005) · Zbl 1114.76378
[61] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput., 38, 158, 339, (1982) · Zbl 0483.65055
[62] Pao, S. P.; Salas, M. D., A computational study of the interaction between a vortex and a shock wave, (1981), AIAA Paper 81-1205
[63] Roe, P. L., Approximate Riemann solver, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372, (1981) · Zbl 0474.65066
[64] Ryu, D.; Chattopadhyay, I.; Choi, E., Equation of state in numerical relativistic hydrodynamics, Astrophys. J. Suppl., 166, 410-420, (2006)
[65] Schulz-Rinne, C. W.; Collins, J. P.; Glaz, H. M., Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14, 7, 1394-1414, (1993) · Zbl 0785.76050
[66] Tchekhovskoy, A.; McKinney, J. C.; Narayan, R., WHAM: a WENO-based general relativistic numerical scheme - I. hydrodynamics, Mon. Not. R. Astron. Soc., 379, 469-497, (2007)
[67] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618, (2002) · Zbl 1024.76028
[68] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[69] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection reaction equations, Proc. R. Soc. Lond. Ser. A, 458, 271-281, (2002) · Zbl 1019.35061
[70] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the harten-Lax-Van leer Riemann solver, Shock Waves, 4, 25-34, (1994) · Zbl 0811.76053
[71] Vides, J.; Nkonga, B.; Audit, E., A simple two-dimensional extension of the HLL Riemann solver for hyperbolic conservation laws, J. Comput. Phys., 280, 1, 643-675, (2015) · Zbl 1349.76403
[72] Wendroff, B., A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics, Comput. Math. Appl., 38, 175-185, (1999) · Zbl 0984.76064
[73] Zanotti, O.; Dumbser, M., Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables, Comput. Astrophys. Cosmol., 3, 1, 1-32, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.