×

zbMATH — the first resource for mathematics

Bayesian analysis of ODEs: solver optimal accuracy and Bayes factors. (English) Zbl 1352.65193

MSC:
65L09 Numerical solution of inverse problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
62F15 Bayesian inference
62P99 Applications of statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Anderwald, A. Gastaldelli, A. Tura, M. Krebs, M. Promintzer-Schifferl, A. Kautzky-Willer, M. Stadler, R. DeFronzo, G. Pacini, and M. Bischof (2011), Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males, J. Clinical Endocrinol. Metabolism, 9, pp. 515–524.
[2] A. Arnold, D. Calvetti, and E. Somersalo (2013), Linear multistep methods, particle filtering and sequential Monte Carlo, Inverse Problems, 29, 085007. · Zbl 1279.65089
[3] A. Arnold, D. Calvetti, and E. Somersalo (2014), Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter, Inverse Problems, 30, 105008. · Zbl 1302.93200
[4] Y. Atchadé and J. Rosenthal (2005), On adaptive Markov chain Monte Carlo algorithm, Bernoulli, 11, pp. 815–828. · Zbl 1085.62097
[5] C. Cai, A. Mohammad-Djafari, S. Legoupil, and T. Rodet (2011), Bayesian data fusion and inversion in x-ray multi-energy computed tomography, in Proceedings of the 18th IEEE International Conference on Image Processing, ICIP, pp. 1377–1380.
[6] D. Calvetti, R. K. Dash, E. Somersalo, and M. E. Cabrera (2006), Local regularization method applied to estimating oxygen consumption during muscle activities, Inverse Problems, 22, pp. 229–243. · Zbl 1082.62027
[7] Y. Cao and L. Petzold (2004), A posteriori error estimation and global error control for ordinary differential equations by the adjoint method, SIAM J. Sci. Comput., 26, pp. 359–374, http://dx.doi.org/10.1137/S1064827503420969 doi:10.1137/S1064827503420969. · Zbl 1075.65107
[8] M. Capistrán, J. Christen, and Velasco-Hernández (2012), Towards uncertainty quantification and inference in the stochastic SIR epidemic model, Math. Biosci., 240, pp. 250–259. · Zbl 1316.92082
[9] Z. Chama, B. Mansouri, M. Anani, and A. Mohammad-Djafari (2012), Image recovery from Fourier domain measurements via classification using Bayesian approach and total variation regularization, AEU - Internat. J. Electron. Commun., 66, pp. 897–902.
[10] J. Christen and C. Fox (2010), A general purpose sampling algorithm for continuous distributions (the t-walk), Bayesian Anal., 5, pp. 263–282. · Zbl 1330.62007
[11] S. L. Cotter, M. Dashti, and A. M. Stuart (2010), Approximation of Bayesian inverse problems for PDEs, SIAM J. Numer. Anal., 48, pp. 322–345, http://dx.doi.org/10.1137/090770734 doi:10.1137/090770734. · Zbl 1210.35284
[12] T. Cui, C. Fox, and M. J. O’Sullivan (2011), Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm, Water Resources Res., 47, W10521 2011.
[13] S. Donnet and A. Samson (2007), Estimation of parameters in missing data models defined by differential equations, J. Statist. Plan. Inference, 137, pp. 2815–2831. · Zbl 1331.62099
[14] M. D. Fall, E. Barat, C. Comtat, T. Dautremer, T. Montagu, and A. Mohammad-Djafari (2011), A discrete-continuous Bayesian model for emission tomography, in Proceedings of the 18th IEEE International Conference on Image Processing, ICIP, pp. 1373–1376.
[15] U. Foryś and A. Marciniak-Czochra (2003), Logistic equations in tumour growth modelling, Int. J. Appl. Math. Comput. Sci., 13, pp. 317–325. · Zbl 1035.92017
[16] C. Fox, M. Palm, and G. Nicholls (1999), Efficient, exact PDE solutions for MCMC, Proc. SPIE, 3816, pp. 23–30.
[17] A. E. Gelfand and D. K. Dey (1994), Bayesian model choice: Asymptotics and exact calculations, J. Roy. Statist. Soc. Ser. B, 56, pp. 501–514. · Zbl 0800.62170
[18] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna (2007), Universally sloppy parameter sensitivities in systems biology models, PLoS Comput. Biol., 3, e189.
[19] H. Haario, E. Saksman, and J. Tamminen (1998), An adaptive metropolis algorithm, Bernoulli, 7, pp. 223–242. · Zbl 0989.65004
[20] M. L. Hazelton (2010), Bayesian inference for network-based models with a linear inverse structure, Transportation Res. Part B: Methodological, 44, pp. 674–685.
[21] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky (1999), Bayesian model averaging: A tutorial, Statist. Sci., 14, pp. 382–401. · Zbl 1059.62525
[22] A. Iserles (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, New York. · Zbl 1171.65060
[23] H. Jeffreys (1961), Theory of Probability, 3rd ed., Oxford University Press, Oxford. · Zbl 0116.34904
[24] J. P. Kaipio and C. Fox (2011), The Bayesian framework for inverse problems in heat transfer, Heat Transfer Engrg., 32, pp. 718–753.
[25] J. P. Kaipio and E. Somersalo (2005), Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York. · Zbl 1068.65022
[26] R. E. Kass and A. E. Raftery (1995), Bayes factors, J. Amer. Statist. Assoc., 90, pp. 773–795. · Zbl 0846.62028
[27] A. Keats, E. Yee, and F. Lien (2010), Information-driven receptor placement for contaminant source determination, Environmental Model. Software, 25, pp. 1000–1013.
[28] V. Kolehmainen, A. Vanne, S. Siltanen, S. Järvenpää, J. P. Kaipio, M. Lassas, and M. Kalke (2007), Bayesian inversion method for 3D dental x-ray imaging, Elektrotech. Inform., 124, pp. 248–253.
[29] S. Kozawa, T. Takenouchi, and K. Ikeda (2012), Subsurface imaging for anti-personal mine detection by Bayesian super-resolution with a smooth-gap prior, Artificial Life Robotics, 16, pp. 478–481.
[30] J. D. Lambert (1991), Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, John Wiley & Sons, Chichester, UK. · Zbl 0745.65049
[31] J. Lang and J. G. Verwer (2007), On global error estimation and control for initial value problems, SIAM J. Sci. Comput., 29, pp. 1460–1475, http://dx.doi.org/10.1137/050646950 doi:10.1137/050646950. · Zbl 1145.65047
[32] A. Mohammad-Djafari (2006), Bayesian inference for inverse problems in signal and image processing and applications, Int. J. Imaging Systems Technol., 16, pp. 209–214.
[33] A. Nissinen, V. P. Kolehmainen, and J. P. Kaipio (2011), Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography, IEEE Trans. Medical Imaging, 30, pp. 231–242. · Zbl 1350.92030
[34] A. Quarteroni, R. Sacco, and F. Saleri (2007), Numerical Mathematics, Texts Appl. Math. 37, Springer, Berlin. · Zbl 1136.65001
[35] K. Radhakrishnan and A. Hindmarsh (1993), Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, Tech. report, Lawrence Livermore National Laboratory.
[36] C. Robert and G. Casella (2004), Monte Carlo Statistical Methods, Springer, New York. · Zbl 1096.62003
[37] C. Schwab and A. M. Stuart (2012), Sparse deterministic approximation of Bayesian inverse problems, Inverse Problems, 28, 045003. · Zbl 1236.62014
[38] E. Somersalo, A. Voutilainen, and J. P. Kaipio (2003), Non-stationary magnetoencephalography by Bayesian filtering of dipole models, Inverse Problems, 19, pp. 1047–1063. · Zbl 1046.92034
[39] E. Süli and D. F. Mayers (2003), An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, UK. · Zbl 1033.65001
[40] P. D. Valpine, (2008). Improved estimation of normalizing constants from Markov chain Monte Carlo output, J. Comput. Graph. Statist., 17, pp. 333–351.
[41] A. Vehtari and J. Lampinen (2000), Bayesian MLP neural networks for image analysis, Pattern Recognition Lett., 21, pp. 1183–1191. · Zbl 0985.68692
[42] J. Wan and N. Zabaras (2011), A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method, Inverse Problems, 27, 105004. · Zbl 1228.65009
[43] D. Watzenig and C. Fox (2009), A review of statistical modelling and inference for electrical capacitance tomography, Measurement Sci. Technol., 20 (2009), 052002.
[44] A. D. Woodbury, (2011), Minimum relative entropy, Bayes and Kapur, Geophys. J. Internat. 185, pp. 181–189.
[45] H. Xue, H. Miao, and H. Wu (2010), Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error, Ann. Statist., 38, pp. 2351–2387. · Zbl 1203.62049
[46] S. Zhu, P. You, H. Wang, X. Li, and A. Mohammad-Djafari (2011), Recognition-oriented Bayesian SAR imaging, in Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, APSAR, 2011, pp. 153–156.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.