Approximating fixed points by Ishikawa iterates. (English) Zbl 0667.47030

Following H. F. Senter and W. G. Dotson jun. [Proc. Am. Math. Soc. 44, 375-380 (1974; Zbl 0299.47032)] and R. K. Bose and R. N. Mukherjee [Proc. Am. Math. Soc. 82, 603-606 (1981; Zbl 0475.47043)], the authors discuss the convergence of the Ishikawa sequence of iterates to a fixed point of quasi-nonexpansive and generalized nonexpansive mappings on a closed convex subset of a uniformly convex Banach space. Certain results of Bose and Mukherjee [op. cit.] follow as particular cases of the results of this paper.
Reviewer: S.L.Singh


47H10 Fixed-point theorems
Full Text: DOI


[1] DOI: 10.2307/2040440 · Zbl 0299.47032 · doi:10.2307/2040440
[2] DOI: 10.2307/2032162 · Zbl 0050.11603 · doi:10.2307/2032162
[3] DOI: 10.2307/2043779 · Zbl 0475.47043 · doi:10.2307/2043779
[4] Goebel, Boll. Un. Mat. Ital. 7 pp 67– (1973)
[5] DOI: 10.2307/1995659 · Zbl 0203.14801 · doi:10.2307/1995659
[6] DOI: 10.2307/2039245 · Zbl 0286.47036 · doi:10.2307/2039245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.