Langevin, Rémi; Rosenberg, Harold A maximum principle at infinity for minimal surfaces and applications. (English) Zbl 0667.49024 Duke Math. J. 57, No. 3, 819-826 (1988). The main results: (1) Let \(f_ 1\), \(f_ 2\) be solution of the exterior Plateau problem on \(\Omega =\{X=(x_ 1,x_ 2)|\) \(x^ 2_ 1+x^ 2_ 2\geq 1\}\). Suppose \(f_ 1(X)\geq f_ 2(X)\) for \(X\in \Omega\) and there exists a sequence \(X_ i\in \Omega\) such that \(| X_ i| \to \infty\) and \(| f_ 1(X_ i)-f_ 2(X_ i)| \to 0\). Then \(f_ 1=f_ 2.\) (2) Minimal herissons with catenoid type ends are rigid. (3) Let f solve the exterior Plateau problem on \(\Omega\). Then \(0\leq a(f)\leq 1\), where a(f) is the coefficient of log R in the asymptotic expansion of f near infinity. If \(a(f)=1\), then \(f(R)=\cosh^{-1}(R)\), i.e., f defines a catenoid. Reviewer: C.Udrişte Cited in 3 ReviewsCited in 17 Documents MSC: 49Q05 Minimal surfaces and optimization 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature 58E12 Variational problems concerning minimal surfaces (problems in two independent variables) Keywords:minimal surfaces; exterior Plateau problem; catenoid PDF BibTeX XML Cite \textit{R. Langevin} and \textit{H. Rosenberg}, Duke Math. J. 57, No. 3, 819--826 (1988; Zbl 0667.49024) Full Text: DOI OpenURL References: [1] A. D. Alexandrov, Sur la théorie des volumes mixtes des corps convexes, I, II, III, IV , Math. Sbornik. 4-45 (1937-1938). [2] R. Langevin, G. Levitt, and H. Rosenberg, Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss) , Singularities (Warsaw, 1985), Banach Center Publication, vol. 20, PWN, Warsaw, 1988, pp. 245-253. · Zbl 0658.53004 [3] W. Meeks, A survey of the geometric results in the classical theory of minimal surfaces , Bol. Soc. Brasil. Mat. 12 (1981), no. 1, 29-86. · Zbl 0577.53007 [4] R. Osserman, A Survey of Minimal Surfaces , Van Nostrand Reinhold, New York, 1969. · Zbl 0209.52901 [5] H. Rosenberg and E. Toubiana, Complete minimal surfaces and minimal herissons , to appear in J. Differential Geom. · Zbl 0657.53004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.