Hromkovič, Juraj Tradeoffs for language recognition on alternating machines. (English) Zbl 0667.68060 Theor. Comput. Sci. 63, No. 2, 203-221 (1989). From the author’s abstract: “The alternating machine having a separate input tape with k two-way, read-only heads, and a certain number of internal configurations, AM(k), is considered as a parallel computing model. For the complexity measure TIME-SPACE-PARALLELISM, the optimal lower bounds \(\Omega (n^ 2)\) and \(\Omega (n^{3/2})\) respectively are proved for the recognition of specific languages on AM(1) and AM(k) respectively. For the complexity measure REVERSALS-SPACE-PARALLELISM, the lower bound \(\Omega (n^{1/2})\) is established for the recognition of a specific language on AM(k). This result implies a polynomial lower bound PARALLEL TIME-HARDWARE of parallel RAMS’s. Lower bounds on the complexity measures TIME-SPACE and REVERSALS-SPACE of nondeterministic machines are direct consequences of the result introduced above.” Reviewer: M.Clausen Cited in 8 Documents MSC: 68Q25 Analysis of algorithms and problem complexity 68Q05 Models of computation (Turing machines, etc.) (MSC2010) 03D15 Complexity of computation (including implicit computational complexity) Keywords:language recognition; alternating machine; complexity measure; TIME- SPACE-PARALLELISM; RAMS PDFBibTeX XMLCite \textit{J. Hromkovič}, Theor. Comput. Sci. 63, No. 2, 203--221 (1989; Zbl 0667.68060) Full Text: DOI References: [1] Andreev, A. E., On a method of obtaining lower bounds to the complexity of individual monotone functions, Dokl. Akad. Nauk SSSR, 282, 5, 1033-1037 (1985), (in Russian) · Zbl 0616.94019 [2] Blum, N. A., Boolean functions requiring \(3n\) network size, Theoret. Comput. Sci., 28, 337-345 (1984) · Zbl 0539.94036 [3] Borodin, A. B.; Cook, S. A., A time-space tradeoff for sorting on a general model of computation, Proc. 12th ACMSTOC, 294-301 (1980) [4] Brandenburg, F. J., Three write heads are as good as \(k\), Math. Systems Theory, 14, 1-12 (1981) · Zbl 0437.68029 [5] Brandenburg, F. J., On one-way auxiliary pushdown automata, (Lecture Notes in Computer Science, 48 (1979), Springer: Springer Berlin), 132-144 · Zbl 0359.68055 [6] Chan, T., Reversal complexity of counter machines, Proc. 13th Ann. ACMSTOC, 147-157 (1981) [7] Chandra, A. K.; Kozen, D. C.; Stockmeyer, L. J., Alternation, J. ACM, 28, 114-133 (1981) · Zbl 0473.68043 [8] Chrobak, M., Hierarchies of one-way multihead automata languages, (Proc. 12th ICALP ’85. Proc. 12th ICALP ’85, Lecture Notes in Computer Science, 194 (1985), Springer: Springer Berlin), 101-110 · Zbl 0638.68097 [9] Cobham, A., The recognition problem for perfect squares, Proc. 7th IEEE Symp. on SWAT, 78-87 (1966) [10] Cook, S. A., An overview of computational complexity, Comm. ACM, 26, 400-408 (1983) · Zbl 0622.68039 [11] Dˇurisˇ, P.; Galil, Z., Fooling a two-way automaton or one pushdown store is better than one counter for two-way machines, Theoret. Comput. Sci., 21, 39-53 (1982) · Zbl 0486.68084 [12] Dˇurisˇ, P.; Galil, Z., A time-space tradeoff for language recognition, Math. Systems Theory, 17, 3-12 (1984) · Zbl 0533.68047 [13] Dˇurisˇ, P.; Galil, Z., On reversal-bounded counter machines and on pushdown automata with a bound on the pushdown store, Inform. and Control, 54, 217-227 (1982) · Zbl 0523.68037 [14] Dˇurisˇ, P.; Galil, Z.; Paul, W.; Reischik, R., Two nonlinear lower bounds, Proc. 15th ACM STOC, 127-132 (1983) [15] Dˇurisˇ, P.; Hromkovicˇ, J., One-way simple multihead finite automata are not closed under concatenation, Theoret. Comput. Sci., 27, 121-125 (1983) · Zbl 0523.68070 [16] Dymond, P. W.; Cook, S. A., Hardware complexity and parallel computation, Proc. 21st Ann. IEEE FOCS, 360-372 (1980) [17] R. Freivalds, Relation between probabilistic and nondeterministic Turing machines, Unpublished communication presented at the 11th MFCS ’84, Prague.; R. Freivalds, Relation between probabilistic and nondeterministic Turing machines, Unpublished communication presented at the 11th MFCS ’84, Prague. [18] Hopcroft, J. E.; Ullman, J. D., Formal Languages and their Relation to Automata (1969), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0196.01701 [19] Hromkovicˇ, J., One-way multihead deterministic finite automata, Acta Inform., 19, 377-384 (1983) · Zbl 0504.68049 [20] Hromkovicˇ, J., Hierarchy of reversal and zero-testing bounded multicounter machines, (Proc. 11th MFCS ’84. Proc. 11th MFCS ’84, Lecture Notes in Computer Science, 176 (1984), Springer: Springer Berlin), 312-321 · Zbl 0582.68049 [21] Hromkovicˇ, J., Fooling a two-way nondeterministic multihead automaton with reversal number restriction, Acta Inform., 22, 589-594 (1985) · Zbl 0565.68078 [22] Hromkovicˇ, J., On the power of alternation in automata theory, J. Comput. System Sci., 31, 28-39 (1985) · Zbl 0582.68018 [23] Hromkovicˇ, J., On one-way two-head deterministic finite state automata, Computers AI, 4, 503-526 (1985) · Zbl 0605.68079 [24] Hromkovicˇ, J., Reversals-Space-Parallelism tradeoff for language recognition (1985), Unpublished manuscript [25] Ibarra, O. H., Characterizations of some tape and time complexity classes of Turing machines in terms of multihead and auxiliary stack automata, J. Comput. System Sci., 5, 81-117 (1971) · Zbl 0255.68012 [26] Ibarra, O. H., On two-way multihead automata, J. Comput. System Sci., 7, 28-37 (1973) · Zbl 0256.68028 [27] Ibarra, O. H.; Kim, C. E., On 3-head versus 2-head finite automata, Acta Inform., 4, 173-200 (1975) · Zbl 0291.94029 [28] Inoue, K.; Takanami, I.; Nakamura, A.; Ae, T., One-way simple multihead finite automata, Theoret. Comput. Sci., 9, 311-328 (1979) · Zbl 0408.68050 [29] Inoue, K.; Matsuno, H.; Taniguschi, H.; Takanami, I., Alternating simple multihead finite automata, Theoret. Comput. Sci., 36, 291-308 (1985) · Zbl 0565.68055 [30] Janiga, L., Real-time computations of two-way multihead finite automata, (Budach, L., Proc. FCT ’79 (1979), Akademie Verlag: Akademie Verlag Berlin), 214-219 · Zbl 0413.68085 [31] King, K. N., Alternating multihead finite automata, (Proc. 8th ICALP ’81. Proc. 8th ICALP ’81, Lecture Notes in Computer Science, 115 (1981), Springer: Springer Berlin), 506-520 · Zbl 0665.68064 [32] Lupanov, O. B., Ob odnom metode sinteza schem, Izv. Vazov Radiofiz., 1, 120-140 (1958), (in Russian) [33] Lupanov, O. B., O sinteze nekatorych klassov upravljajusˇcˇich sistem, Problemi Kibernetiki, 10, 63-97 (1963), (in Russian) [34] Maas, W., Quadratic lower bounds for deterministic and nondeterministic one-tape Turing machines, Proc. 16th Ann. ACM STOC, 401-408 (1984) [35] Ming, Li, On one tape versus two stacks, (Tech. Rept. 84-591 (January 1984), Dept. of Computer Science, Cornell University: Dept. of Computer Science, Cornell University Ithaca, New York) [36] Ming, Li, Simulating two pushdowns by one tape in \(n^{1.5}(log_2\) n)\(^{0.5}\) time, Proc. 26th Ann. IEEE FOCS, 56-64 (1985) [37] Ming, Li; Vitányi, P. M.B., Tape versus queue and stack: The lower bounds, Centrum voor Wiskunde en Informatica, Rept. CS-R8519 (September 1985) [38] Monien, B., Two-way multihead automata over a one-letter alphabet, RAIRO Inform. Théor., 14, 67-82 (1980) · Zbl 0442.68039 [39] Monien, B.; Sudborough, I. H., The interface between language theory and complexity theory, (Book, R. V., Formal Language Theory, Perspectives and Open Problems (1981), Academic Press: Academic Press New York), 287-323 [40] Necˇiporuk, E. J., A Boolean function, Dokl. Akad. Nauk SSSR, 169, 765-766 (1966) · Zbl 0161.00901 [41] Nigmatulin, R. G., Proc. 8th ICALP ’81 (1983), Kazan State University Press, (in Russian) [42] Paul, W. J., On time hierarchies, J. Comput. System Sci., 19, 197-202 (1979) · Zbl 0428.68055 [43] Piatkowski, T. F., \(N\)-head finite-state machines, (Ph.D. Dissertation (1963), University of Michigan) · Zbl 0173.01503 [44] Pudlák, P., A lower bound on complexity of branching programs, (Proc. 11th MFCS ’84. Proc. 11th MFCS ’84, Lecture Notes in Computer Science, 176 (1984), Springer: Springer Berlin), 480-490 · Zbl 0572.68033 [45] Razborov, A. A., Lower bounds on the monotone complexity of some Boolean functions, Soviet Math. Doklady, 281, 798-801 (1985) · Zbl 0621.94027 [46] Rivest, R. L.; Yao, A. C., \(k+1\) heads are better than \(k\), J. ACM, 25, 337-340 (1978) · Zbl 0372.68017 [47] Rosenberg, A. L., On multihead finite automata, IBM J. Res. Develop., 10, 388-394 (1966) · Zbl 0168.01303 [48] Sakoda, W. J.; Sipser, M., Nondeterminism and the size of two-way finite automata, Proc. 10th Ann. ACM STOC, 275-286 (1978) · Zbl 1282.68160 [49] Sudborough, I. H., Bounded-reversal multihead finite automata languages, Inform. and Control, 25, 317-328 (1974) · Zbl 0282.68033 [50] Sudborough, I. H., One-way multihead writing finite automata, Inform. and Control, 39, 1-20 (1976) · Zbl 0337.02023 [51] Vitányi, P. M.B., The simple roots of real-time computation hierarchies, (Proc. 11th ICALP ’84. Proc. 11th ICALP ’84, Lecture Notes in Computer Science, 172 (1984), Springer: Springer Berlin), 486-489 · Zbl 0477.68047 [52] Vitányi, P. M.B., Square time is optimal for simulation of one pushdown store or one queue by an oblivious one-head tape unit, Inform. Process. Lett, 21, 87-91 (1985) · Zbl 0575.68051 [53] Vitányi, P. M.B., An \(n^{1.618}\) lower bound one the time to simulate one queue or two pushdown stores by one tape, Inform. Process. Lett., 21, 147-152 (1985) · Zbl 0582.68019 [54] Wagner, K.; Wechsung, G., Computational Complexity, (Matematische Monographien (1986), VEB Deutshcer Verlag der Wissenshaften: VEB Deutshcer Verlag der Wissenshaften Berlin) · Zbl 0584.68061 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.