×

zbMATH — the first resource for mathematics

Constrained optimization with low-rank tensors and applications to parametric problems with PDEs. (English) Zbl 1381.49027

MSC:
49M15 Newton-type methods
65K05 Numerical mathematical programming methods
90C15 Stochastic programming
65K15 Numerical methods for variational inequalities and related problems
15A69 Multilinear algebra, tensor calculus
Software:
TT Toolbox; htucker; MCS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. · Zbl 1147.65043
[2] M. Bachmayr and W. Dahmen, Adaptive near-optimal rank tensor approximation for high-dimensional operator equations, Found. Comput. Math., 15 (2015), pp. 839–898. · Zbl 1335.65049
[3] M. Bachmayr and W. Dahmen, Adaptive low-rank methods for problems on Sobolev spaces with error control in L\(_2\), ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1107–1136. · Zbl 1347.41031
[4] M. Bachmayr, R. Schneider, and A. Uschmajew, Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math., to appear. · Zbl 1357.65153
[5] J. Ballani and L. Grasedyck, Hierarchical tensor approximation of output quantities of parameter-dependent PDEs, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 852–872. · Zbl 1327.65010
[6] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123–161. · Zbl 1230.65006
[7] S. Bellavia, Inexact interior-point method, J. Optim. Theory Appl., 96 (1998), pp. 109–121. · Zbl 0897.90182
[8] C. Da Silva and F. Herrmann, Optimization on the hierarchical Tucker manifold – Applications to tensor completion, Linear Algebra Appl., 481 (2015), pp. 131–173. · Zbl 1317.65136
[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278. · Zbl 0962.15005
[10] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–1127. · Zbl 1167.14038
[11] S. V. Dolgov, Alternating Minimal Energy Approach to ODEs and Conservation Laws in Tensor Product Formats, preprint, , 2014.
[12] S. V. Dolgov and D. V. Savostyanov, Alternating Minimal Energy Methods for linear systems in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248–A2271. · Zbl 1307.65035
[13] C. Eckardt and G. Young, The Approximation of one matrix by another of lower rank, Psychometrika, 1 (1936), pp. 211–218. · JFM 62.1075.02
[14] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J. Optim., 4 (1994), pp. 393–422. · Zbl 0814.65049
[15] M. Espig, W. Hackbusch, A. Litvinenko, H. G. Matthies, and P. Wähnert, Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats, Comput. Math. Appl., 67 (2014), pp. 818–829. · Zbl 1350.65005
[16] M. Espig, W. Hackbusch, A. Litvinenko, H. G. Matthies, and E. Zander, Efficient analysis of high dimensional data in tensor formats, in Sparse Grids and Applications, J. Garcke and M. Griebel, eds., Springer, Berlin, 2013, pp. 31–56.
[17] A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces, Numer. Math., 121 (2012), pp. 503–530. · Zbl 1264.65095
[18] R. Forster and R. Kornhuber, A polynomial chaos approach to stochastic variational inequalities, J. Numer. Math., 18 (2010), pp. 235–255. · Zbl 1220.65082
[19] J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications, J. Garcke and M. Griebel, eds., Springer, Berlin, 2013, pp. 57–80.
[20] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2029–2054. · Zbl 1210.65090
[21] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approximation techniques, GAMM-Mitt., 36 (2013), pp. 53–78. · Zbl 1279.65045
[22] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Heidelberg, 2012. · Zbl 1244.65061
[23] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov, Approximate iterations for structured matrices, Numer. Math., 109 (2008), pp. 365–383. · Zbl 1144.65029
[24] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal. Appl., 15 (2009), pp. 706–722. · Zbl 1188.15022
[25] M. Heinkenschloss and L. N. Vicente, Analysis of inexact trust-region SQP algorithms, SIAM J. Optim., 12 (2002), pp. 283–302. · Zbl 1035.90104
[26] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13 (2002), pp. 865–888, . · Zbl 1080.90074
[27] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Springer, New York, 2009. · Zbl 1167.49001
[28] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), pp. 164–189. · JFM 53.0095.01
[29] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor optimization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713. · Zbl 1252.15031
[30] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen, Computations in quantum tensor networks, Linear Algebra Appl., 438 (2012), pp. 750–781. · Zbl 1259.81088
[31] W. Huyer and A. Neumaier, Global optimization by multilevel coordinate search, J. Global Optim., 14 (1999), pp. 331–355. · Zbl 0956.90045
[32] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Classics Appl. Math. 31, SIAM, Philadelphia, 2000. · Zbl 0988.49003
[33] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455–500. · Zbl 1173.65029
[34] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty, SIAM J. Sci. Comput., 36 (2014), pp. A3011–A3029. · Zbl 1312.49033
[35] D. P. Kouri and T. M. Surowiec, Risk-Averse PDE-Constrained Optimization Using the Conditional Value-at-Risk, SIAM J. Optim., 26 (2016), pp. 365–396. · Zbl 1337.49049
[36] D. Kressner, M. Steinlechner, and B. Vandereycken, Low-rank tensor completion by Riemannian optimization, BIT, 54 (2014), pp. 447–468. · Zbl 1300.65040
[37] D. Kressner, M. Steinlechner, and B. Vandereycken, Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure, SIAM J. Sci. Comput. 38 (2016), pp. A2018–A2044. · Zbl 1382.65089
[38] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288–1316. · Zbl 1237.65034
[39] D. Kressner and C. Tobler, Algorithm 941: htucker – a Matlab toolbox for tensors in hierarchical Tucker format, ACM Trans. Math. Software, 40 (2014), 22. · Zbl 1322.65054
[40] F. Y. Kuo, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite elements methods for a class of elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 3351–5574.
[41] V. Murg, F. Verstraete, Ö. Legeza, and R. M. Noack, Simulating strongly correlated quantum systems with tree tensor networks, Phys. Rev. B (3), 82 (2010).
[42] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, SIAM, Philadelphia, 1992.
[43] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006. · Zbl 1104.65059
[44] I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70–88. · Zbl 1183.65040
[45] I. V. Oseledets, DMRG approach to fast linear algebra in the TT-format, Comput. Methods Appl. Math., 11 (2011), pp. 382–393. · Zbl 1283.15041
[46] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317. · Zbl 1232.15018
[47] I. V. Oseledets, TT-toolbox 2.2: Fast Multidimensional Array Operations in TT Format, 2012.
[48] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Progam., 58 (1993), pp. 353–367. · Zbl 0780.90090
[49] M. Sørensen, L. De Lathauwer, P. Comon, S. Icart, and L. Deneire, Canonical polyadic decomposition with a columnwise orthonormal factor matrix, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1190–1213. · Zbl 1263.15011
[50] T. Rohwedder and A. Uschmajew, On local convergence of alternating schemes for optimization of convex problems in the tensor train format, SIAM J. Numer. Anal., 51 (2013), pp. 1134–1162. · Zbl 1273.65088
[51] M. Steinlechner, Riemannian optimization for high-dimensional tensor completion, SIAM J. Sci. Comput. 38 (2016), pp. S461–S484. · Zbl 1352.65129
[52] L. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966).
[53] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces, SIAM J. Optim., 13 (2002), pp. 805–841, . · Zbl 1033.49039
[54] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Ser. Optim. 11, SIAM, Philadelphia, 2011, . · Zbl 1235.49001
[55] A. Uschmajew and B. Vandereycken, The geometry of algorithms using hiearchical tensors, Linear Algebra Appl., 439 (2013), pp. 133–166. · Zbl 1281.65062
[56] J. C. Ziems and S. Ulbrich, Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIAM J. Optim., 21 (2011), pp. 1–40. · Zbl 1214.49027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.