×

zbMATH — the first resource for mathematics

New computational methods in tsunami science. (English) Zbl 1353.86029

MSC:
86A15 Seismology (including tsunami modeling), earthquakes
86-08 Computational methods for problems pertaining to geophysics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1098/rsta.2006.1809 · doi:10.1098/rsta.2006.1809
[2] Behrens J . 2010 Numerical methods in support of advanced tsunami early warning. In Handbook of geomathematics (eds W Freeden, MZ Nashed, T Sonar). Berlin, Germany: Springer. · Zbl 1197.86002 · doi:10.1007/978-3-642-01546-5_14
[3] Synolakis, Validation and verification of tsunami numerical models, Pure Appl. Geophys. 165 pp 2197– (2008) · doi:10.1007/s00024-004-0427-y
[4] NEAMTIC Candidate Tsunami Watch Providers. 2015. See http://neamtic.ioc-unesco.org/neamtws/candidate-tsunami .
[5] Titov, Real-time tsunami forecasting: challenges and solutions, Nat. Hazards 35 pp 35– (2005) · doi:10.1007/s11069-004-2403-3
[6] Pranowo WS . 2010 Adaptive mesh refinement applied to tsunami modeling: TsunaFLASH. Ph.D. Thesis, University of Bremen. See http://elib.suub.uni-bremen.de/diss/docs/00012008.pdf .
[7] DOI: 10.1093/gji/ggu203 · doi:10.1093/gji/ggu203
[8] Galkin, Propagation of tsunami waves generated by elliptical sources, Int. J. Tsunami Soc. 4 pp 149– (1986)
[9] Mansinha, The displacement fields of inclined faults, Bull. Seismol. Soc. Am. 61 pp 1433– (1971)
[10] Okada, Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75 pp 1135– (1985)
[11] DOI: 10.5194/nhess-10-1617-2010 · doi:10.5194/nhess-10-1617-2010
[12] Pelties, Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes, J. Geophys. Res. 117 pp 2156– (2012) · doi:10.1029/2011JB008857
[13] Pelties, Verification of an ADER-DG method for complex dynamic rupture problems, Geosci. Model Dev. 7 pp 847– (2014) · doi:10.5194/gmd-7-847-2014
[14] Breuer A , Heinecke A , Rettenberger S , Bader M , Gabriel A-A , Pelties C . 2014 Sustained petascale performance of seismic simulations with SeisSol on SuperMUC. In Supercomputing–29th International Conference, ISC 2014 (eds JM Kunkel, T Ludwig, HW Meuer). Lecture Notes in Computer Science, vol. 8488. Berlin, Germany: Springer. · Zbl 06414609 · doi:10.1007/978-3-319-07518-1_1
[15] Bardet, Landslide tsunamis: recent findings and research directions, Pure Appl. Geophys. 160 pp 1793– (2003) · doi:10.1007/s00024-003-2406-0
[16] Miller, The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay, Bull. Seismol. Soc. Am. 50 pp 253– (1960)
[17] DOI: 10.1146/annurev.fluid.40.111406.102208 · Zbl 1230.76014 · doi:10.1146/annurev.fluid.40.111406.102208
[18] Harbitz, Mechanisms of tsunami generation by submarine landslides: a short review, Norwegian J. Geol. 86 pp 255– (2006)
[19] Labbé, Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): comparison with coastal data, J. Geophys. Res. 117 pp F01008– (2012) · doi:10.1029/2011JF001964
[20] DOI: 10.5194/nhess-10-1085-2010 · doi:10.5194/nhess-10-1085-2010
[21] Titov VV , Gonzalez FI . 1997 Implementation and testing of the Method Of Splitting Tsunami (MOST) model. NOAA Technical Memorandum ERL PMEL-112 1927, NOAA, Seattle, WA, USA.
[22] Imamura F , Yalciner AC , Ozyurt G . 2006 Tsunami modelling manual. See http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf .
[23] Wang, User manual for COMCOT version 1.7 (2009)
[24] Gailler, Simulation systems for tsunami wave propagation forecasting within the French tsunami warning system, Nat. Hazards Earth Syst. Sci. 13 pp 2465– (2013) · doi:10.5194/nhess-13-2465-2013
[25] DOI: 10.1111/j.1365-246X.2012.05666.x · doi:10.1111/j.1365-246X.2012.05666.x
[26] Reymond, Rapid forecast of tsunami wave heights from a database of pre-computed simulations, and application during the 2011 Tohoku tsunami in French Polynesia, Geophys. Res. Lett. 39 pp L11603– (2012) · doi:10.1029/2012GL051640
[27] Zhang, An efficient and robust tsunami model on unstructured grids. Part I: inundation benchmarks, Pure Appl. Geophys. 165 pp 2229– (2008) · doi:10.1007/s00024-008-0424-7
[28] Harig, Tsunami simulations on several scales: comparison of approaches with unstructured meshes and nested grids, Ocean Dyn. 58 pp 429– (2008) · doi:10.1007/s10236-008-0162-5
[29] Dutykh, The VOLNA code for the numerical modeling of tsunami waves: generation, propagation and inundation, Eur. J. Mech. B/Fluids 30 pp 598– (2011) · Zbl 1258.76036 · doi:10.1016/j.euromechflu.2011.05.005
[30] George, Finite volume methods and adaptive refinement for global tsunami propagation and local inundation, Sci. Tsunami Hazards 24 pp 319– (2006)
[31] DOI: 10.1017/S0962492911000043 · Zbl 1426.76394 · doi:10.1017/S0962492911000043
[32] Pranowo WS , Behrens J , Schlicht J , Ziemer C . 2008 Adaptive mesh refinement applied to tsunami modeling: TsunaFLASH. In Proc. Int. Conf. on Tsunami Warning (ICTW) (ed. H Adrianto). Jakarta, Indonesia: State Ministry of Research and Technology, Republic of Indonesia (RISTEK).
[33] Vater S , Behrens J . 2014 Well-balanced inundation modeling for shallow-water flows with discontinuous Galerkin schemes. In Finite volumes for complex applications VII–Elliptic, parabolic and hyperbolic problems (eds J Fuhrmann, M Ohlberger, C Rohde). Berlin, Germany: Springer. · Zbl 1426.76575 · doi:10.1007/978-3-319-05591-6_98
[34] DOI: 10.5194/nhess-13-1507-2013 · doi:10.5194/nhess-13-1507-2013
[35] Shuto, Numerical simulation of tsunamis. Its present and near future, Nat. Hazards 4 pp 171– (1991) · doi:10.1007/BF00162786
[36] DOI: 10.1061/(ASCE)0733-950X(1993)119:6(618) · doi:10.1061/(ASCE)0733-950X(1993)119:6(618)
[37] DOI: 10.1016/j.physleta.2009.12.043 · Zbl 1236.76013 · doi:10.1016/j.physleta.2009.12.043
[38] DOI: 10.1061/(ASCE)0733-950X(2000)126:1(39) · doi:10.1061/(ASCE)0733-950X(2000)126:1(39)
[39] Shi, A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation, Ocean Model. 43–44 pp 36– (2012) · doi:10.1016/j.ocemod.2011.12.004
[40] Pedersen G , Løvholt F . 2008 Documentation of a global Boussinesq solver. Preprint series in Applied Mathematics 1, Department of Mathematics, University of Oslo, Norway. See http://urn.nb.no/URN:NBN:no-27775 .
[41] DOI: 10.1016/S0378-3839(02)00043-1 · doi:10.1016/S0378-3839(02)00043-1
[42] Kim, Turbulent mixing and passive scalar transport in shallow flows, Phys. Fluids 23 pp 016603– (2011) · Zbl 06421607 · doi:10.1063/1.3531716
[43] Sitanggang, Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition, Int. J. Numer. Meth. Fluids 49 pp 57– (2005) · Zbl 1122.76071 · doi:10.1002/fld.985
[44] Kazolea, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coast. Eng. 69 pp 42– (2012) · doi:10.1016/j.coastaleng.2012.05.008
[45] Gisler, SAGE calculations of the tsunami threat from La Palma, Sci. Tsunami Hazards 24 pp 288– (2006)
[46] Abadie, Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects, J. Geophys. Res. 117 pp C05030– (2012) · doi:10.1029/2011JC007646
[47] DOI: 10.1098/rspa.2001.0915 · doi:10.1098/rspa.2001.0915
[48] Grilli, Tsunami generation by submarine mass failure. Part I: modeling, experimental validation, and sensitivity analysis, J. Waterw. Port Coast. Ocean Eng. 131 pp 283– (2005) · doi:10.1061/(ASCE)0733-950X(2005)131:6(283)
[49] DOI: 10.5194/nhess-8-243-2008 · doi:10.5194/nhess-8-243-2008
[50] Ward, Landslide tsunami, J. Geophys. Res. 106 pp 11 201– (2001) · doi:10.1029/2000JB900450
[51] DOI: 10.1029/2001GL013110 · doi:10.1029/2001GL013110
[52] Løvholt, Oceanic propagation of a potential tsunami from the La Palma island, J. Geophys. Res. 113 pp C09026– (2008) · doi:10.1029/2007JC004603
[53] Zhou, A nested grid Boussinesq-type approach to modelling dispersive propagation and runup of landslide-generated tsunamis, Nat. Hazards Earth Syst. Sci. 11 pp 2677– (2011) · doi:10.5194/nhess-11-2677-2011
[54] Kirby, Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects, Ocean Model. 62 pp 39– (2013) · doi:10.1016/j.ocemod.2012.11.009
[55] DOI: 10.1098/rsta.2014.0376 · doi:10.1098/rsta.2014.0376
[56] DOI: 10.1016/j.coastaleng.2010.03.003 · doi:10.1016/j.coastaleng.2010.03.003
[57] Gisler, Two- and three-dimensional asteroid impact simulations, Comput. Sci. Eng. 6 pp 46– (2004) · doi:10.1109/MCISE.2004.1289308
[58] Lynett, Observations and modeling of tsunami-induced currents in ports and harbors, Earth Planet. Sci. Lett. 327–328 pp 68– (2012) · doi:10.1016/j.epsl.2012.02.002
[59] Dias, On the modelling of tsunami generation and tsunami inundation, Proc. IUTAM 10 pp 338– (2014) · doi:10.1016/j.piutam.2014.01.029
[60] Nicolau del Roure, Structure and evolution of tidal starting jet vortices at idealized barotropic inlets, J. Geophys. Res. 114 pp C05024– (2009) · doi:10.1029/2008JC004997
[61] Okal, Madagascar field survey after the December 2004 Indian Ocean tsunami, Earthq. Spectra 22 pp 263– (2006) · doi:10.1193/1.2202646
[62] Okal, Oman field survey after the December 2004 Indian Ocean tsunami, Earthq. Spectra 22 pp 203– (2006) · doi:10.1193/1.2202647
[63] Okal, Mauritius and Réunion Islands, field survey after the December 2004 Indian Ocean tsunami, Earthq. Spectra 22 pp S241– (2006) · doi:10.1193/1.2209190
[64] O’Brien, Will oscillating wave surge converters survive tsunamis?, Theor. Appl. Mech. Lett. 5 pp 160– (2015) · doi:10.1016/j.taml.2015.05.008
[65] Hesthaven, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications (2008) · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[66] Kelly, Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode, J. Comput. Phys. 231 pp 7988– (2012) · Zbl 1284.65134 · doi:10.1016/j.jcp.2012.04.042
[67] LeVeque, Finite volume methods for hyperbolic problems (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[68] Toro, Riemann solvers and numerical methods for fluid dynamics (2009) · Zbl 1227.76006 · doi:10.1007/b79761
[69] DOI: 10.1016/j.advwatres.2011.02.016 · doi:10.1016/j.advwatres.2011.02.016
[70] St-Germain, Numerical modeling of the impact with structures of tsunami bores propagating on dry and wet beds using the SPH method, Int. J. Protect. Struct. 3 pp 221– (2012) · doi:10.1260/2041-4196.3.2.221
[71] Xie, A corrected 3D SPH method for modeling breaking tsunami waves, Nat. Hazards 60 pp 81– (2012) · doi:10.1007/s11069-011-9954-x
[72] DOI: 10.1146/annurev.fluid.35.101101.161153 · Zbl 1039.76007 · doi:10.1146/annurev.fluid.35.101101.161153
[73] Castro, CUDA-C implementation of the ADER-DG method for linear hyperbolic PDEs, Geosci. Model Dev. Discuss. 6 pp 3743– (2013) · doi:10.5194/gmdd-6-3743-2013
[74] Guillas S . CFI expertise benefits tsunami modelling. See http://www.cfi.ses.ac.uk/centre-for-innovation-expertise-benefits-tsunami-modelling-at-ucl/ .
[75] Bader, Dynamically adaptive simulations with minimal memory requirement–solving the shallow water equations using Sierpinski curves, SIAM J. Sci. Comput. 32 pp 212– (2010) · Zbl 1410.76149 · doi:10.1137/080728871
[76] Rakowsky, Operational tsunami modelling with TsunAWI–recent developments and applications, Nat. Hazards Earth Syst. Sci. 13 pp 1629– (2013) · doi:10.5194/nhess-13-1629-2013
[77] Behrens, Adaptive atmospheric modeling–key techniques in grid generation, data structures, and numerical operations with applications (2006) · Zbl 1138.86002
[78] DOI: 10.1098/rsta.2009.0175 · Zbl 1192.86005 · doi:10.1098/rsta.2009.0175
[79] Geist, Complex earthquake rupture and local tsunamis, J. Geophys. Res. B 107 pp ESE 2-1– (2002) · doi:10.1029/2000JB000139
[80] Løvholt, Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion, J. Geophys. Res. 117 pp C03047– (2012) · doi:10.1029/2011JC007616
[81] Sarri, Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification, Nat. Hazards Earth Syst. Sci. 12 pp 2003– (2012) · doi:10.5194/nhess-12-2003-2012
[82] Sraj, Uncertainty quantification and inference of Manning’s friction coefficients using DART buoy data during the Tohoku tsunami, Ocean Model. 83 pp 82– (2014) · doi:10.1016/j.ocemod.2014.09.001
[83] DOI: 10.1214/ss/1177012413 · Zbl 0955.62619 · doi:10.1214/ss/1177012413
[84] Santner, The design and analysis of computer experiments (2003) · Zbl 1041.62068 · doi:10.1007/978-1-4757-3799-8
[85] Gramacy, Adaptive design and analysis of supercomputer experiments, Technometrics 51 pp 130– (2009) · doi:10.1198/TECH.2009.0015
[86] Beck, Sequential design with Mutual Information for Computer Experiments (MICE): emulation of a tsunami model · Zbl 1349.62364 · doi:10.1137/140989613
[87] DOI: 10.1098/rspa.2014.0575 · Zbl 1371.86015 · doi:10.1098/rspa.2014.0575
[88] Tang, Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res. 114 pp 1– (2009) · doi:10.1029/2009JC005476
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.