×

zbMATH — the first resource for mathematics

ConceFT: concentration of frequency and time via a multitapered synchrosqueezed transform. (English) Zbl 1353.42031
Summary: A new method is proposed to determine the time-frequency content of time-dependent signals consisting of multiple oscillatory components, with time-varying amplitudes and instantaneous frequencies. Numerical experiments as well as a theoretical analysis are presented to assess its effectiveness.

MSC:
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
62M09 Non-Markovian processes: estimation
65T50 Numerical methods for discrete and fast Fourier transforms
Software:
sapa
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1152/physrev.00009.2009 · doi:10.1152/physrev.00009.2009
[2] DOI: 10.1016/j.jjcc.2011.02.006 · doi:10.1016/j.jjcc.2011.02.006
[3] DOI: 10.1152/physrev.00035.2008 · doi:10.1152/physrev.00035.2008
[4] DOI: 10.1016/j.biopsycho.2011.11.009 · doi:10.1016/j.biopsycho.2011.11.009
[5] DOI: 10.1111/aas.12251 · doi:10.1111/aas.12251
[6] Wu, Evaluating physiological dynamics via synchrosqueezing: prediction of ventilator weaning, IEEE Trans. Biomed. Eng. 61 pp 736– (2013)
[7] Baudin, Impact of ventilatory modes on the breathing variability in mechanically ventilated infants, Front. Pediatr. Sect. Neonatol. 2 pp 132– (2014)
[8] Flandrin P . 1999 Time–frequency/time-scale analysis. San Diego, CA: Academic Press. · Zbl 0954.94003
[9] DOI: 10.1137/100798818 · Zbl 1235.42037 · doi:10.1137/100798818
[10] DOI: 10.1098/rspa.1998.0193 · Zbl 0945.62093 · doi:10.1098/rspa.1998.0193
[11] DOI: 10.1142/S1793536909000047 · doi:10.1142/S1793536909000047
[12] DOI: 10.1137/140957767 · Zbl 1380.94062 · doi:10.1137/140957767
[13] DOI: 10.1142/S179353690900028X · doi:10.1142/S179353690900028X
[14] DOI: 10.1142/S1793536909000205 · doi:10.1142/S1793536909000205
[15] DOI: 10.1016/j.acha.2015.01.003 · Zbl 1330.94013 · doi:10.1016/j.acha.2015.01.003
[16] DOI: 10.1016/j.amc.2014.06.092 · Zbl 1335.76048 · doi:10.1016/j.amc.2014.06.092
[17] DOI: 10.1198/jasa.2011.tm09771 · Zbl 1234.62123 · doi:10.1198/jasa.2011.tm09771
[18] Daubechies I , Maes S . 1996 A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. In Wavelets in medicine and biology (eds A Aldroubi, M Unser), pp. 527–546. Boca Raton, FL: CRC Press . · Zbl 0848.92003
[19] DOI: 10.1016/j.acha.2010.08.002 · Zbl 1213.42133 · doi:10.1016/j.acha.2010.08.002
[20] DOI: 10.1142/S179353691100074X · Zbl 1234.94018 · doi:10.1142/S179353691100074X
[21] Wu HT . 2011 Adaptive analysis of complex data sets. PhD thesis, Princeton University. See https://sites.google.com/site/hautiengwu/home .
[22] DOI: 10.1109/TASSP.1978.1163047 · doi:10.1109/TASSP.1978.1163047
[23] DOI: 10.1109/78.382394 · doi:10.1109/78.382394
[24] Chassande-Mottin E , Auger F , Flandrin P . 2003 Time–frequency/time-scale reassignment. In Wavelets and signal processing (ed. L Debnath), pp. 233–267. Applied and Numerical Harmonic Analysis Series. Cham, Switzerland: Springer International. (doi:10.1007/978-1-4612-0025-3_8) · Zbl 1041.94513
[25] Auger F , Chassande-Mottin E , Flandrin P . 2012 Making reassignment adjustable: the Levenberg–Marquardt approach. In 2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March, pp. 3889–3892. Piscataway, NJ: IEEE. (doi:10.1109/ICASSP.2012.6288767) · doi:10.1109/ICASSP.2012.6288767
[26] Thakur G . 2014 The synchrosqueezing transform for instantaneous spectral analysis. In Excursions in harmonic analysis, vol. 4 (eds R Balan, M BeguĂ©, JJ Benedetto, W Czaja, KA Okoudjou), pp. 397–406. Applied and Numerical Harmonic Analysis Series. Cham, Switzerland: Springer International. (doi:10.1007/978-3-319-20188-7_15) · Zbl 1381.94042 · doi:10.1007/978-3-319-20188-7_15
[27] Chui CK , Lin YT , Wu HT . In press. Real-time dynamics acquisition from irregular samples–with application to anesthesia evaluation. Anal. Appl . (doi:10.1142/S0219530515500165) · Zbl 1382.94028 · doi:10.1142/S0219530515500165
[28] DOI: 10.1111/rssb.12039 · doi:10.1111/rssb.12039
[29] Maes S . 1995 Synchrosqueezed representation yields a new reading of the wavelet transform. In Wavelet Applications II, Orlando, FL, 17–21 April, Proc. SPIE, vol. 2491, p. 532. Bellingham, WA: SPIE. (doi:10.1117/12.205417) · doi:10.1117/12.205417
[30] DOI: 10.1016/j.acha.2012.08.008 · Zbl 1305.42005 · doi:10.1016/j.acha.2012.08.008
[31] DOI: 10.1109/TSP.2012.2212891 · Zbl 1393.94697 · doi:10.1109/TSP.2012.2212891
[32] Lin YT , Flandrin P , Wu HT . In press. When interpolation-induced reflection artifact meets time–frequency analysis. IEEE Trans. Biomed. Eng . (doi:10.1109/TBME.2015.2510580) · doi:10.1109/TBME.2015.2510580
[33] DOI: 10.1016/j.sigpro.2012.11.029 · doi:10.1016/j.sigpro.2012.11.029
[34] DOI: 10.1016/j.sigpro.2012.02.019 · doi:10.1016/j.sigpro.2012.02.019
[35] DOI: 10.1016/j.acha.2014.08.004 · Zbl 1317.65263 · doi:10.1016/j.acha.2014.08.004
[36] DOI: 10.1109/TSP.2015.2391077 · Zbl 1394.94432 · doi:10.1109/TSP.2015.2391077
[37] DOI: 10.1115/1.4029824 · doi:10.1115/1.4029824
[38] DOI: 10.1109/TGRS.2015.2466660 · doi:10.1109/TGRS.2015.2466660
[39] DOI: 10.1137/120891113 · Zbl 1282.65036 · doi:10.1137/120891113
[40] DOI: 10.1137/130939912 · Zbl 1297.42053 · doi:10.1137/130939912
[41] DOI: 10.1098/rsta.2011.0622 · Zbl 1353.92034 · doi:10.1098/rsta.2011.0622
[42] DOI: 10.1016/j.acha.2013.07.003 · Zbl 1291.92073 · doi:10.1016/j.acha.2013.07.003
[43] DOI: 10.1109/TBME.2014.2375292 · doi:10.1109/TBME.2014.2375292
[44] Lin Y-T . 2015 The modeling and quantification of rhythmic to non-rhythmic phenomenon in electrocardiography during anesthesia. PhD thesis, National Taiwan University. (http://arxiv.org/abs/1502.02764)
[45] DOI: 10.1016/j.ymssp.2011.07.001 · doi:10.1016/j.ymssp.2011.07.001
[46] Feng, Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions, Mech. Syst. Signal Process. 52–53 pp 360– (2015) · doi:10.1016/j.ymssp.2014.07.009
[47] DOI: 10.1016/j.econlet.2013.09.026 · Zbl 1288.91197 · doi:10.1016/j.econlet.2013.09.026
[48] DOI: 10.3390/econometrics3040864 · doi:10.3390/econometrics3040864
[49] DOI: 10.1109/LGRS.2014.2317578 · doi:10.1109/LGRS.2014.2317578
[50] DOI: 10.1190/geo2013-0204.1 · doi:10.1190/geo2013-0204.1
[51] DOI: 10.1002/2014RG000461 · doi:10.1002/2014RG000461
[52] Li, Role of laser-driven electron-multirescattering in resonance-enhanced below-threshold harmonic generation in He atoms, Phy. Rev. A 90 pp 041401(R)– (2013) · doi:10.1103/PhysRevA.90.041401
[53] DOI: 10.1063/1.4903164 · doi:10.1063/1.4903164
[54] DOI: 10.1038/ncomms8178 · doi:10.1038/ncomms8178
[55] DOI: 10.1137/140955872 · Zbl 1336.74016 · doi:10.1137/140955872
[56] Yang H , Lu J , Brown WP , Daubechies I , Ying L . 2015 Quantitative canvas weave analysis using 2-D synchrosqueezed transforms: application of time–frequency analysis to art investigation. Signal Process. Mag., IEEE 32 (4), 55–63. (doi:10.1109/MSP.2015.2406882)
[57] DOI: 10.1109/PROC.1982.12433 · doi:10.1109/PROC.1982.12433
[58] Percival DB , Walden AT . 1993 Spectral analysis for physical applications: multitaper and conventional univariate techniques . Cambridge, UK: Cambridge University Press. · Zbl 0796.62077 · doi:10.1017/CBO9780511622762
[59] DOI: 10.1109/TBME.2014.2311996 · doi:10.1109/TBME.2014.2311996
[60] Fraser G , Boashash B . 1994 Multiple window spectrogram and time–frequency distributions. In 1994 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Adelaide, Australia, 19–22 April, vol. 4, IV/293–IV/296. Piscataway, NJ: IEEE. (doi:10.1109/ICASSP.1994.389818) · doi:10.1109/ICASSP.1994.389818
[61] Farry KA , Baraniuk RG , Walker ID . 1995 Nonparametric, low bias, and low variance time–frequency analysis of myoelectric signals. In 1995 IEEE 17th Annu. Conf. Engineering in Medicine and Biology Society, Montreal, Canada, 20–23 September, vol. 2, pp. 993–994. Piscataway, NJ: IEEE. (doi:10.1109/IEMBS.1995.579397) · doi:10.1109/IEMBS.1995.579397
[62] Bayram M , Baraniuk RG . 1996 Multiple window time–frequency and time-scale analysis. In Advanced Signal Processing Algorithms, Architectures, and Implementations VI, Denver, CO, 4 August, Proc. SPIE, vol. 2846, p. 174. Bellingham, WA: SPIE. (doi:10.1117/12.255431) · doi:10.1117/12.255431
[63] DOI: 10.1109/10.771197 · doi:10.1109/10.771197
[64] DOI: 10.1109/TSP.2007.893961 · Zbl 1391.94449 · doi:10.1109/TSP.2007.893961
[65] Lin YT , Hseu SS , Yien HW , Tsao J . 2011 Analyzing autonomic activity in electrocardiography about general anesthesia by spectrogram with multitaper time–frequency reassignment. In 2011 4th Int. Conf. on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October, vol. 2, pp. 630–634. Piscataway, NJ: IEEE . (doi:10.1109/BMEI.2011.6098432) · doi:10.1109/BMEI.2011.6098432
[66] DOI: 10.1109/TBME.2011.2171959 · doi:10.1109/TBME.2011.2171959
[67] Daubechies I . 1992 Ten lectures on wavelets . CBMS-NSF Regional Conference Series in Applied Mathematics, no. 61. Philadelphia, PA: SIAM. (doi:10.1137/1.9781611970104) · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[68] Kowalski M , Meynard A , Wu HT . 2015 Convex optimization approach to signals with fast varying instantaneous frequency. (http://arxiv.org/abs/1503.07591) · Zbl 1375.94076
[69] Gallager R . 2008 Circularly-symmetric Gaussian random vectors. See http://www.rle.mit.edu/rgallager/documents/CircSymGauss.pdf .
[70] DOI: 10.1109/18.9761 · Zbl 0672.42007 · doi:10.1109/18.9761
[71] DOI: 10.1088/0266-5611/4/3/009 · Zbl 0701.42004 · doi:10.1088/0266-5611/4/3/009
[72] DOI: 10.1109/TSP.2002.804066 · Zbl 1369.94247 · doi:10.1109/TSP.2002.804066
[73] Lin YT , Wu HT . Submitted. ConceFT for time-varying heart rate variability analysis as a measure of noxious stimulation during general anesthesia.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.