×

zbMATH — the first resource for mathematics

An operator-based local discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations. (English) Zbl 1354.83005

MSC:
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gundlach C, Calabrese G, Hinder I and Martín-García J M 2005 Constraint damping in the Z4 formulation and harmonic gauge Class. Quantum Grav.22 3767 · Zbl 1154.83302
[2] Pretorius F 2005 Numerical relativity using a generalized harmonic decomposition Class. Quantum Grav.22 425
[3] Pretorius F 2005 Evolution of binary black-hole spacetimes Phys. Rev. Lett.95 121101 · doi:10.1103/PhysRevLett.95.121101
[4] Lindblom L, Scheel M A, Kidder L E, Owen R and Rinne O 2006 A new generalized harmonic evolution system Class. Quantum Grav.23 S447 · Zbl 1191.83013
[5] Boyle L, Kesden M and Nissanke S 2008 Binary black-hole merger: symmetry and the spin expansion Phys. Rev. Lett.100 151101 · Zbl 1228.83061 · doi:10.1103/PhysRevLett.100.151101
[6] Scheel M A, Boyle M, Chu T, Kidder L E, Matthews K D and Pfeiffer H P 2009 High-accuracy waveforms for binary black hole inspiral, merger, and ringdown Phys. Rev. D 79 024003 · doi:10.1103/PhysRevD.79.024003
[7] Kidder L et al 2000 Spectral Einstein Code www.black-holes.org/SpEC.html
[8] Hilditch D, Weyhausen A and Brügmann B 2016 Pseudospectral method for gravitational wave collapse Phys. Rev. D 93 063006 · doi:10.1103/PhysRevD.93.063006
[9] Shibata M and Nakamura T 1995 Evolution of three-dimensional gravitational waves: harmonic slicing case Phys. Rev. D 52 5428–44 · Zbl 1250.83027 · doi:10.1103/PhysRevD.52.5428
[10] Baumgarte T W and Shapiro S L 1998 Numerical integration of Einstein’s field equations Phys. Rev. D 59 024007 · Zbl 1250.83004 · doi:10.1103/PhysRevD.59.024007
[11] David Brown J 2005 Conformal invariance and the conformal-traceless decomposition of the gravitational field Phys. Rev. D 71 104011 · doi:10.1103/PhysRevD.71.104011
[12] Alcubierre M, Brügmann B, Dramlitsch T, Font J A, Papadopoulos P, Seidel E, Stergioulas N and Takahashi R 2000 Towards a stable numerical evolution of strongly gravitating systems in general relativity: the conformal treatments Phys. Rev. D 62 044034 · doi:10.1103/PhysRevD.62.044034
[13] Alcubierre M, Brügmann B, Diener P, Koppitz M, Pollney D, Seidel E and Takahashi R 2003 Gauge conditions for long-term numerical black hole evolutions without excision Phys. Rev. D 67 084023 · doi:10.1103/PhysRevD.67.084023
[14] Sarbach O, Calabrese G, Pullin J and Tiglio M 2002 Hyperbolicity of the Baumgarte– Shapiro–Shibata–Nakamura system of Einstein evolution equations Phys. Rev. D 66 064002 · doi:10.1103/PhysRevD.66.064002
[15] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Accurate evolutions of orbiting black-hole binaries without excision Phys. Rev. Lett.96 111101 · doi:10.1103/PhysRevLett.96.111101
[16] Baker J G, Centrella J, Choi D-I, Koppitz M and van Meter J 2006 Gravitational-wave extraction from an inspiraling configuration of merging black holes Phys. Rev. Lett.96 111102 · doi:10.1103/PhysRevLett.96.111102
[17] Gourgoulhon E, Grandclément P, Taniguchi K, Marck J-A and Bonazzola S 2001 Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: method and tests Phys. Rev. D 63 064029 · doi:10.1103/PhysRevD.63.064029
[18] Gourgoulhon E, Grandclément P, Marck J-A, Jérôme Novak and Taniguchi K Lorene 1997 www.lorene.obspm.fr/
[19] Pfeiffer H P, Kidder L E, Scheel M A and Teukolsky S A 2003 A multidomain spectral method for solving elliptic equations Comput. Phys. Commun.152 253–73 · Zbl 1196.65179 · doi:10.1016/S0010-4655(02)00847-0
[20] Ansorg M, Brügmann B and Tichy W 2004 Single-domain spectral method for black hole puncture data Phys. Rev. D 70 064011 · doi:10.1103/PhysRevD.70.064011
[21] Sopuerta C F, Sun P, Laguna P and Xu J 2006 A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems Class. Quantum Grav.23 251 · Zbl 1086.85004
[22] Sopuerta C F and Laguna P 2006 Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a nonrotating black hole Phys. Rev. D 73 044028 · doi:10.1103/PhysRevD.73.044028
[23] Aksoylu B, Bernstein D, Bond S and Holst M 2008 Generating initial data in general relativity using adaptive finite element methods Technical Report 2008-09 arXiv:0801.3142
[24] Korobkin O, Aksoylu B, Holst M, Pazos E and Tiglio M 2009 Solving the Einstein constraint equations on multi-block triangulations using finite element methods Class. Quantum Grav.26 145007 · Zbl 1172.83007
[25] Cao Z 2015 Binary black hole simulation with an adaptive finite element method: solving the einstein constraint equations Phys. Rev. D 91 044033 · doi:10.1103/PhysRevD.91.044033
[26] Gottlieb D and Hesthaven J S 2001 Spectral methods for hyperbolic problems J. Comput. Appl. Math.128 83–131 · Zbl 0974.65093 · doi:10.1016/S0377-0427(00)00510-0
[27] Hesthaven J S and Warburton T 2008 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications(Texts in Applied Mathematics) (New York: Springer) · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[28] Dumbser M and Zanotti O 2009 Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations J. Comput. Phys.228 6991–7006 · Zbl 1261.76028 · doi:10.1016/j.jcp.2009.06.009
[29] Radice D and Rezzolla L 2011 Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes Phys. Rev. D 84 024010 · doi:10.1103/PhysRevD.84.024010
[30] Zhao J and Tang H 2013 Runge–Kutta discontinuous galerkin methods with WENO limiter for the special relativistic hydrodynamics J. Comput. Phys.242 138–68 · Zbl 1314.76035 · doi:10.1016/j.jcp.2013.02.018
[31] Zanotti O, Fambri F and Dumbser M 2015 Solving the relativistic magnetohydrodynamics equations with ader discontinuous galerkin methods, a posteriori subcell limiting and adaptive mesh refinement Mon. Not. R. Astron. Soc.452 3010–29 · doi:10.1093/mnras/stv1510
[32] Bugner M, Dietrich T, Bernuzzi S, Weyhausen A and Brügmann B 2016 Solving 3d relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous galerkin methods Phys. Rev. D 94 084004 · doi:10.1103/PhysRevD.94.084004
[33] Kidder L E et al 2016 Spectre: a task-based discontinuous galerkin code for relativistic astrophysics (arXiv:1609.00098)
[34] Vol’pert A I 1967 The spaces BV and quasilinear equations Math. USSR–Sb.2 225
[35] Dal Maso G, Lefloch P G and Murat F 1995 Definition and weak stability of nonconservative products J. Math. Pures Appl.74 483–548 · Zbl 0853.35068
[36] LeFloch P 1988 Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form Commun. PDE13 669–727 · Zbl 0683.35049 · doi:10.1080/03605308808820557
[37] LeFloch P 1989 Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form Nonlinear Hyperbolic Equations–Theory, Computation Methods, and Applications, Proc. of the Second Int. Conf. on Nonlinear Hyperbolic Problems(Aachen, 14–18 March 1988) ed J Ballmann and R Jeltsch (Berlin: Springer) pp 362–73 · doi:10.1007/978-3-322-87869-4_37
[38] Hou T Y and LeFloch P G 1994 Why nonconservative schemes converge to wrong solutions: error analysis Math. Comput.62 497–530 · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[39] Colombeau J F 2000 New Generalized Functions and Multiplication of Distributions(North-Holland Mathematics Studies) (Amsterdam: Elsevier)
[40] Colombeau J F and Le Roux A Y 1988 Multiplications of distributions in elasticity and hydrodynamics J.. Math. Phys.29 315–9 · Zbl 0646.76007 · doi:10.1063/1.528069
[41] Cauret J-J, Colombeau J-F and Le Roux A Y 1989 Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations J. Math. Anal. Appl.139 552–73 · Zbl 0691.35057 · doi:10.1016/0022-247X(89)90129-7
[42] Toumi I 1992 A weak formulation of Roe’s approximate Riemann solver J. Comput. Phys.102 360–73 · Zbl 0783.65068 · doi:10.1016/0021-9991(92)90378-C
[43] Toumi I and Kumbaro A 1996 An approximate linearized Riemann solver for a two-fluid model J. Comput. Phys.124 286–300 · Zbl 0847.76056 · doi:10.1006/jcph.1996.0060
[44] Castro M, Gallardo J and Parés C 2006 High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems Math. Comput.75 1103–34 · Zbl 1096.65082 · doi:10.1090/S0025-5718-06-01851-5
[45] Parés C 2006 Numerical methods for nonconservative hyperbolic systems: a theoretical framework SIAM J. Numer. Anal.44 300–21 · Zbl 1130.65089 · doi:10.1137/050628052
[46] Rhebergen S, Bokhove O and van der Vegt J J W 2008 Discontinuous galerkin finite element methods for hyperbolic nonconservative partial differential equations J. Comput. Phys.227 1887–922 · Zbl 1153.65097 · doi:10.1016/j.jcp.2007.10.007
[47] Tassi P A, Rhebergen S, Vionnet C A and Bokhove O 2008 A discontinuous Galerkin finite element model for river bed evolution under shallow flows Comput. Methods Appl. Mech. Eng.197 2930–47 · Zbl 1194.76143 · doi:10.1016/j.cma.2008.01.023
[48] Teukolsky S A 2016 Formulation of discontinuous Galerkin methods for relativistic astrophysics J. Comput. Phys.312 333–56 · Zbl 1352.65374 · doi:10.1016/j.jcp.2016.02.031
[49] Taylor N W, Kidder L E and Teukolsky S A 2010 Spectral methods for the wave equation in second-order form Phys. Rev. D 82 024037 · doi:10.1103/PhysRevD.82.024037
[50] Arnold D N 1982 An interior penalty finite element method with discontinuous elements SIAM J. Numer. Anal.19 742–60 · Zbl 0482.65060 · doi:10.1137/0719052
[51] Shahbazi K 2005 An explicit expression for the penalty parameter of the interior penalty method J. Comput. Phys.205 401–7 · Zbl 1072.65149 · doi:10.1016/j.jcp.2004.11.017
[52] Cheng Y and Shu C-W 2008 A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives Math. Comput.77 699–730 · Zbl 1141.65075 · doi:10.1090/S0025-5718-07-02045-5
[53] Grote M J, Schneebeli A and Schötzau D 2006 Discontinuous Galerkin finite element method for the wave equation SIAM J. Numer. Anal.44 2408–31 · Zbl 1129.65065 · doi:10.1137/05063194X
[54] Grote M J, Schneebeli A and Schötzau D 2007 Interior penalty discontinuous Galerkin method for Maxwell’s equations: energy norm error estimates J. Comput. Appl. Math.204 375–86 · Zbl 1136.78014 · doi:10.1016/j.cam.2006.01.044
[55] Hesthaven J S and Warburton T 2002 Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations J. Comput. Phys.181 186–221 · Zbl 1014.78016 · doi:10.1006/jcph.2002.7118
[56] Schneebeli A 2006 Interior penalty discontinuous Galerkin methods for electromagnetic and acoustic wave equations PhD thesis Universityof Basel http://edoc.unibas.ch/525/
[57] Cockburn B and Shu C-W 1998 The local discontinuous Galerkin method for time-dependent convection-diffusion systems SIAM J. Numer. Anal.35 2440–63 · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[58] Xu Y and Shu C-W 2005 Local discontinuous Galerkin methods for nonlinear Schrödinger equations J. Comput. Phys.205 72–97 · Zbl 1072.65130 · doi:10.1016/j.jcp.2004.11.001
[59] Xu Y and Shu C-W 2006 Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the ito-type coupled KdV equations Comput. Methods Appl. Mech. Eng.195 3430–47 · Zbl 1124.76035 · doi:10.1016/j.cma.2005.06.021
[60] Bassi F and Rebay S 1997 A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations J. Comput. Phys.131 267–79 · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[61] Bassi F, Rebay S, Mariotti G, Pedinotti S and Savini M 1997 A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows Proc. of the 2nd European Conf. on Turbomachinery Fluid Dynamics and Thermodynamics(Technologisch Instituut, Antwerpen, Belgium, 1997,) pp 99–109
[62] Yan J, Shu C-W and Bushnell D M 2002 Local discontinuous Galerkin methods for partial differential equations with higher order derivatives J. Sci. Comput.17 27–47 · Zbl 1003.65115 · doi:10.1023/A:1015132126817
[63] Funaro D and Gottlieb D 1988 A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations Math. Comput.51 599–613 · Zbl 0699.65079 · doi:10.1090/S0025-5718-1988-0958637-X
[64] Funaro D and Gottlieb D 1991 Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment Math. Comput.57 585–96 · Zbl 0736.65074 · doi:10.1090/S0025-5718-1991-1094950-6
[65] Hesthaven J S 2000 Spectral penalty methods Appl. Numer. Math.33 23–41 · Zbl 0964.65114 · doi:10.1016/S0168-9274(99)00068-9
[66] Wang Z J 2002 Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: basic formulation J. Comput. Phys.178 210–51 · Zbl 0997.65115 · doi:10.1006/jcph.2002.7041
[67] Wang Z J and Liu Y 2002 Spectral (finite) volume method for conservation laws on unstructured grids: II. Extension to two-dimensional scalar equation J. Comput. Phys.179 665–97 · Zbl 1006.65113 · doi:10.1006/jcph.2002.7082
[68] Wang Z J and Liu Y 2004 Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional systems and partition optimization J. Sci. Comput.20 137–57 · Zbl 1097.65100 · doi:10.1023/A:1025896119548
[69] Wang Z J, Zhang L and Liu Y 2004 Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems J. Comput. Phys.194 716–41 · Zbl 1039.65072 · doi:10.1016/j.jcp.2003.09.012
[70] Liu Y, Vinokur M and Wang Z J 2006 Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems J. Comput. Phys.212 454–72 · Zbl 1085.65099 · doi:10.1016/j.jcp.2005.06.024
[71] Sun Y, Wang Z J and Liu Y 2006 Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow J. Comput. Phys.215 41–58 · Zbl 1140.76381 · doi:10.1016/j.jcp.2005.10.019
[72] Liu Y, Vinokur M and Wang Z J 2006 Spectral difference method for unstructured grids I: basic formulation J. Comput. Phys.216 780–801 · Zbl 1097.65089 · doi:10.1016/j.jcp.2006.01.024
[73] Wang Z J, Liu Y, May G and Jameson A 2006 Spectral difference method for unstructured grids II: extension to the Euler equations J. Sci. Comput.32 45–71 · Zbl 1151.76543 · doi:10.1007/s10915-006-9113-9
[74] Gassner G J 2013 A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods SIAM J. Sci. Comput.35 A1233–53 · Zbl 1275.65065 · doi:10.1137/120890144
[75] Del Rey Fernández D C, Boom P D and Zingg D W 2014 A generalized framework for nodal first derivative summation-by-parts operators J. Comput. Phys.266 214–39 · Zbl 1311.65002 · doi:10.1016/j.jcp.2014.01.038
[76] Carpenter M H, Gottlieb D and Abarbanel S 1993 The stability of numerical boundary treatments for compact high-order finite-difference schemes J. Comput. Phys.108 272–95 · Zbl 0791.76052 · doi:10.1006/jcph.1993.1182
[77] Svärd M and Nordström J 2014 Review of summation-by-parts schemes for initial–boundary-value problems J. Comput. Phys.268 17–38 · Zbl 1349.65336 · doi:10.1016/j.jcp.2014.02.031
[78] Del Rey Fernández D C, Hicken J E and Zingg D W 2014 Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations Comput. Fluids95 171–96 · Zbl 1390.65064 · doi:10.1016/j.compfluid.2014.02.016
[79] Tichy W 2006 Black hole evolution with the BSSN system by pseudospectral methods Phys. Rev. D 74 084005 · doi:10.1103/PhysRevD.74.084005
[80] Tichy W 2009 Long term black hole evolution with the BSSN system by pseudospectral methods Phys. Rev. D 80 104034 · doi:10.1103/PhysRevD.80.104034
[81] Zumbusch G 2009 Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime Class. Quantum Grav.26 175011 · Zbl 1176.83005
[82] Field S E, Hesthaven J S, Lau S R and Mroue A H 2010 Discontinuous Galerkin method for the spherically reduced Baumgarte–Shapiro–Shibata–Nakamura system with second-order operators Phys. Rev. D 82 104051 · doi:10.1103/PhysRevD.82.104051
[83] David Brown J, Diener P, Field S E, Hesthaven J S, Herrmann F, Mroué A H, Sarbach O, Schnetter E, Tiglio M and Wagman M 2012 Numerical simulations with a first-order BSSN formulation of Einstein’s field equations Phys. Rev. D 85 084004 · doi:10.1103/PhysRevD.85.084004
[84] Alcubierre M et al 2004 Towards standard testbeds for numerical relativity Class. Quantum Grav.21 589
[85] Babiuc M C et al 2008 Implementation of standard testbeds for numerical relativity Class. Quantum Grav.25 125012 · Zbl 1144.83002
[86] Xing Y, Chou C and Shu C 2013 Energy conserving local discontinuous Galerkin methods for wave propagation problems Inverse Problems Imaging7 1–28 · Zbl 06174325 · doi:10.3934/ipi.2013.7.1
[87] Aclubierre M 2008 Introduction to 3 + 1 Numerical Relativity (Oxford: Oxford University Press)
[88] Kreiss H O and Scherer G 1974 Mathematical Aspects of Finite Elements in Partial Differential Equations ed C D Boor (New York: Academic)
[89] Kreiss H O and Scherer G 1972 Comparison of accurate methods for the integration of hyperbolic equations Tellus24 199–215 · doi:10.1111/j.2153-3490.1972.tb01547.x
[90] Duistermaat J J and Kolk J A C 2010 Distributions: Theory and Applications (Cornerstones) (Birkhäuser: Boston, MA) · Zbl 1213.46001 · doi:10.1007/978-0-8176-4675-2
[91] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes 3rd edn: the Art of Scientific Computing (Cambridge: Cambridge University Press) · Zbl 1132.65001
[92] Grandclément P and Novak J 2009 Spectral methods for numerical relativity Living Rev. Relativ.12 1 · Zbl 1166.83004 · doi:10.12942/lrr-2009-1
[93] Cockburn B 2003 Discontinuous Galerkin methods Z. angew. Math. Mech.83 731–54 · Zbl 1036.65079 · doi:10.1002/zamm.200310088
[94] Miller J M and Schnetter E 2016 A discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations: supplemental material https://bitbucket.org/Yurlungur/oldg-supplemental · Zbl 1354.83005
[95] Bernardi C and Maday Y 1992 Polynomial interpolation results in Sobolev spaces J. Comput. Appl. Math.43 53–80 · Zbl 0767.41001 · doi:10.1016/0377-0427(92)90259-Z
[96] Schwab C 1998 p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (Oxford: Oxford University Press) · Zbl 0910.73003
[97] Richardson L F 1911 The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam Phil. Trans. R. Soc. A 210 307–57 · JFM 42.0873.02 · doi:10.1098/rsta.1911.0009
[98] Gottlieb S and Shu C-W 1998 Total variation diminishing Runge–Kutta schemes Math. Comput. Am. Math. Soc.67 73–85 · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[99] Dormand J R and Prince P J 1980 A family of embedded Runge–Kutta formulae J. Comput. Appl. Math.6 19–26 · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
[100] Prince P J and Dormand J R 1981 High order embedded Runge–Kutta formulae J. Comput. Appl. Math.7 67–75 · Zbl 0449.65048 · doi:10.1016/0771-050X(81)90010-3
[101] Cockburn B 1999 Discontinuous Galerkin methods for convection-dominated problems High-Order Methods for Computational Physics (Berlin: Springer) pp 69–224 · Zbl 0937.76049 · doi:10.1007/978-3-662-03882-6_2
[102] Cockburn B and Shu C-W 1991 The Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws RAIRO-Modélisation Math. Anal. Numer.25 337–61
[103] Kosloff D and Tal-Ezer H 1993 A modified chebyshev pseudospectral method with an O(N-1) time step restriction J. Comput. Phys.104 457–69 · Zbl 0781.65082 · doi:10.1006/jcph.1993.1044
[104] Warburton T and Hagstrom T 2008 Taming the CFL number for discontinuous Galerkin methods on structured meshes SIAM J. Numer. Anal.46 3151–80 · Zbl 1181.35010 · doi:10.1137/060672601
[105] Qiu J, Dumbser M and Shu C-W 2005 The discontinuous Galerkin method with Lax–Wendroff type time discretizations Comput. Methods Appl. Mech. Eng.194 4528–43 · Zbl 1093.76038 · doi:10.1016/j.cma.2004.11.007
[106] Lax P D and Richtmyer R D 1956 Survey of the stability of linear finite difference equations Commun. Pure Appl. Math.9 267–93 · Zbl 0072.08903 · doi:10.1002/cpa.3160090206
[107] Kreiss H-O and Oliger J 1979 Stability of the Fourier method SIAM J. Numer. Anal.16 421–33 · Zbl 0419.65076 · doi:10.1137/0716035
[108] Vandeven H 1991 Family of spectral filters for discontinuous problems J. Sci. Comput.6 159–92 · Zbl 0752.35003 · doi:10.1007/BF01062118
[109] Tadmor E 1989 Convergence of spectral methods for nonlinear conservation laws SIAM J. Numer. Anal.26 30–44 · Zbl 0667.65079 · doi:10.1137/0726003
[110] Maday Y and Tadmor E 1989 Analysis of the spectral vanishing viscosity method for periodic conservation laws SIAM J. Numer. Anal.26 854–70 · Zbl 0678.65066 · doi:10.1137/0726047
[111] Tadmor E 1990 Shock capturing by the spectral viscosity method Comput. Methods Appl. Mech. Eng.80 197–208 · Zbl 0729.65073 · doi:10.1016/0045-7825(90)90023-F
[112] Schochet St 1990 The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws SIAM J. Numer. Anal.27 1142–59 · Zbl 0717.65075 · doi:10.1137/0727066
[113] Kreiss H, Kreiss H-O and Oliger J 1973 Methods for the Approximate Solution of Time Dependent Problems vol 10 (Geneva: International Council of Scientific Unions)
[114] Hu Y, Koppelman D M, Brandt S R and Frank Löffler 2015 Model-driven auto-tuning of stencil computations on GPUs Exastencils Workshop
[115] Löffler F et al 2012 The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics Class. Quantum Grav.29 115001 · Zbl 1247.83003
[116] Collaborative Effort 2011 Einstein Toolkit: Open software for relativistic astrophysics http://einsteintoolkit.org/
[117] Collaborative Effort 2011 Einstein Toolkit for Relativistic Astrophysics Astrophysics Source Code Library (ascl:1102.014) http://adsabs.harvard.edu/abs/2011ascl.soft02014C
[118] Husa S, Hinder I and Lechner C 2006 Kranc: a Mathematica application to generate numerical codes for tensorial evolution equations Comput. Phys. Commun.174 983–1004 · Zbl 1196.68327 · doi:10.1016/j.cpc.2006.02.002
[119] Husa S, Hinder I, Lechner C, Schnetter E and Wardell B 2006 Kranc: Kranc assembles numerical code http://kranccode.org/
[120] David Brown J, Diener P, Sarbach O, Schnetter E and Tiglio M 2009 Turduckening black holes: an analytical and computational study Phys. Rev. D 79 044023 · doi:10.1103/PhysRevD.79.044023
[121] Schnetter E et al 2009 McLachlan, a public BSSN code www.cct.lsu.edu/eschnett/McLachlan/
[122] Miller J M and Schnetter E 2016 Mclachlan OLDG thorn for the Einstein Toolkit https://bitbucket.org/Yurlungur/mclachlanoldg
[123] Bernstein D 1993 A numerical study of the black hole plus Brill wave spacetime PhD Thesis University of Illinois at Urbana-Champaign
[124] Anninos P, Massó J, Seidel E, Suen W-M and Towns J 1995 Three-dimensional numerical relativity: the evolution of black holes Phys. Rev. D 52 2059 · doi:10.1103/PhysRevD.52.2059
[125] Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E and Shalf J 2003 The Cactus framework and toolkit: design and applications 5th Int. Conf., Vector and Parallel Processing (Berlin: Springer) (http://edoc.mpg.de/3341) · Zbl 1027.65524 · doi:10.1007/3-540-36569-9_13
[126] Collaborative Effort 1995 Cactus Computational Toolkit www.cactuscode.org/
[127] The HDF Group 1997 Hierarchical Data Format, version 5 1997-NNNN www.hdfgroup.org/HDF5/
[128] Rossum G 1995 Python reference manual Technical Report CS-R9525
[129] van der Walt S, Colbert S C and Varoquaux G 2011 The numpy array: a structure for efficient numerical computation Comput. Sci. Eng.13 22–30 · doi:10.1109/MCSE.2011.37
[130] Jones E et al 2001 SciPy: Open source scientific tools for Python http://www.scipy.org/
[131] Hunter J D 2007 Matplotlib: a 2D graphics environment Comput. Sci. Eng.9 90–5 · Zbl 05333433 · doi:10.1109/MCSE.2007.55
[132] Turk M J, Smith B D, Oishi J S, Skory S, Skillman S W, Abel T and Norman M L 2011 yt: a multi-code analysis toolkit for astrophysical simulation data Astrophys. J. Suppl. Ser.192 9
[133] Wolfram Research Inc. 2012 Mathematica 9.0 (Champaign, IL: Wolfram Research Inc.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.