×

zbMATH — the first resource for mathematics

Jungck-Khan iterative scheme and higher convergence rate. (English) Zbl 1382.47025
Summary: In this paper, we continue the theme of analytical and numerical treatment of Jungck-type iterative schemes. In particular, we focus on a special case of Jungck-Khan iterative scheme introduced by the first author et al. [“Analytical and numerical treatment of Jungck-type iterative schemes”, Appl. Math. Comput. 231, 521–535 (2014; doi:10.1016/j.amc.2013.12.150)] to get an insight in the strong convergence and data dependence results obtained therein. Our investigations show that this special case, under different control conditions on parametric sequences, provides a higher convergence rate and better data dependence estimates as compared to the Jungck-Khan iterative scheme itself.

MSC:
47J25 Iterative procedures involving nonlinear operators
47H06 Nonlinear accretive operators, dissipative operators, etc.
65J15 Numerical solutions to equations with nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal R.P., J. Nonlinear Convex Anal. 8 pp 61– (2007)
[2] DOI: 10.1186/1687-1812-2013-173 · Zbl 06320819
[3] DOI: 10.1155/S1687182004311058 · Zbl 1090.47053
[4] Berinde V., Iterative Approximation of Fixed Points (2007) · Zbl 1165.47047
[5] Chugh R., Int. J. Comput. Appl. 40 pp 41– (2011)
[6] Ciric L.B., Publ. Inst. Math. (Beograd) (NS). 12 (26) pp 19– (1971)
[7] DOI: 10.2307/2040075 · Zbl 0291.54056
[8] DOI: 10.1016/j.amc.2014.02.008 · Zbl 1336.65103
[9] DOI: 10.1155/2014/943127
[10] Gürsoy F., Fixed Point Theory Appl. 76 pp 1– (2013)
[11] Hussain N., Abstr. Appl. Anal. 2013 pp 1– (2013)
[12] DOI: 10.2307/2318216 · Zbl 0321.54025
[13] DOI: 10.1016/j.jmaa.2006.02.058 · Zbl 1110.54024
[14] Karakaya V., Abstr. Appl. Anal. 2013 pp 1– (2013)
[15] Khan A.R., Bull. Belg. Math. Soc. Simon Stevin. 17 pp 127– (2010)
[16] DOI: 10.1016/j.amc.2013.12.150 · Zbl 1410.65221
[17] DOI: 10.1186/1029-242X-2013-1 · Zbl 1282.26025
[18] DOI: 10.1006/jmaa.2000.7042 · Zbl 0964.49007
[19] Olatinwo M.O., Fasc. Math. 40 pp 37– (2008)
[20] Olatinwo M.O., Creative Math Inf. 17 pp 33– (2008)
[21] Popescu O., Math. Commun. 12 pp 195– (2007)
[22] DOI: 10.1155/IJMMS.2005.3035 · Zbl 1117.26005
[23] DOI: 10.1155/2008/242916 · Zbl 1205.47059
[24] DOI: 10.1016/j.na.2006.11.007 · Zbl 1169.47052
[25] DOI: 10.1090/S0002-9939-1991-1086345-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.