×

Rees matrix semigroups. (English) Zbl 0668.20049

In this paper we provide a new, abstract characterization of classical Rees matrix semigroups over monoids with zero. The corresponding abstract class of semigroups is obtained by studying the relationship between arbitrary elements and a class of idempotents, which we call projections.
Reviewer: M.V.Lawson

MSC:

20M10 General structure theory for semigroups
20M20 Semigroups of transformations, relations, partitions, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Batbedat, Simon Stevin 56 pp 181– (1982)
[2] De Barros, Différentielle Catégoriques 11 pp 23– (1969)
[3] DOI: 10.1007/BF01459084 · JFM 54.0151.04 · doi:10.1007/BF01459084
[4] Steinfeld, Acta. Sci. Math. (Szeged) 28 pp 135– (1967)
[5] DOI: 10.1017/S0305004100017436 · JFM 66.1207.01 · doi:10.1017/S0305004100017436
[6] DOI: 10.1112/plms/s3-44.1.103 · Zbl 0481.20036 · doi:10.1112/plms/s3-44.1.103
[7] Marki, Acta. Sci. Math. (Szeged) 37 pp 95– (1975)
[8] Lawson, J. Austral. Math. Soc. Ser. A 42 pp 132– (1987)
[9] Lallement, Acta. Sci. Math. (Szeged) 30 pp 113– (1969)
[10] Lallement, J. Math. Pures Appl. 45 pp 67– (1966)
[11] Howie, An Introduction to the Theory of Semigroups (1976) · Zbl 0355.20056
[12] Meakin, Colloq. Math. Soc. János Bolyai 39 pp 115– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.