×

zbMATH — the first resource for mathematics

Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups. (English. Russian original) Zbl 0668.22008
Funct. Anal. Appl. 22, No. 4, 273-285 (1988); translation from Funkts. Anal. Prilozh. 22, No. 4, 23-37 (1988).
Let G be one of the groups GL(\(\infty,C)\), U(\(\infty)\times U(\infty)\) and Mot(\(\infty)\), where \(GL(\infty,C)=\cup GL(n,C)\), \(U(\infty)=\cup U(n)\), and Mot(\(\infty)\) is the semidirect product of U(\(\infty)\) and P(\(\infty)\) \((P(\infty)=\cup P(n)\) and P(n) is the space of Hermitian \(n\times n\) matrices). The author constructs a wide class X of unitary representations of the groups G. It is proved that representations from X are irreducible and pairwise inequivalent. The representations are constructed in the following way. The Lie algebra \({\mathfrak g}\) of G is imbedded into some Lie algebra \({\mathfrak g}^*\) of polynomial currents. The “unitary” representations of \({\mathfrak g}^*\) with highest weights are constructed. They are restricted onto \({\mathfrak g}\). It is proved that the representations of G, corresponding to the constructed representations of \({\mathfrak g}\), are irreducible. The proof is based on the fact, that a unitary representation of the “compact” subgroup K can be extended to a unitary representation of some larger group \(K^*\).
Reviewer: A.Klimyk

MSC:
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Bourbaki, Lie Groups and Lie Algebras [Russian translation], Mir, Moscow (1976), Chaps. 1-3.
[2] A. M. Vershik and S. V. Kerov, ”Chapters and factor representations of an infinite unitary group,” Dokl. Akad. Nauk SSSR,267, No. 2, 272-276 (1982). · Zbl 0524.22017
[3] A. M. Vershik, ”The metagonal and the metaplectic infinite-dimensional groups. 1. General concepts and the metagonal groups,” in: Differential Geometry, Lie Groups, and Mechanics, J. Sov. Math.,28, No. 4 (1985). · Zbl 0556.22007
[4] I. Ts. Gokhberg and M. G. Krein, Introduction to Theory of Linear Non-Self-Adjoint Operators [in Russian], Nauka, Moscow (1965).
[5] A. A. Kirillov, ”Representations of an infinite-dimensional unitary group,” Dokl. Akad. Nauk SSSR,212, No. 2, 288-290 (1973). · Zbl 0288.22020
[6] V. I. Kolomytsev and Yu. S. Samoilenko, ”On irreducible representations of inductive limits of groups,” Ukr. Mat. Zh.,29, 526-531 (1977).
[7] Yu. A. Neretin, ”Almost invariant structures and constructions of unitary representations of the diffeomorphism group of the circle,” Dokl. Akad. Nauk SSSR,294, No. 1, 37-41 (1987)
[8] Yu. A. Neretin, ”Unitary representations of the diffeomorphism group of the p-adic projective straight line,” Funkts. Anal. Prilozhen.,18, No. 4, 92-93 (1984).
[9] N. I. Nessonov, ”A complete classification of representations of GL(?) containing the identity representation of a unitary subgroup,” Mat. Sb.,180, No. 1, 131-150 (1986). · Zbl 0614.22007
[10] G. I. Ol’shanskii, ”A construction of unitary representations of infinite-dimensional classical groups,” Dokl. Akad. Nauk SSSR,250, No. 2, 284-288 (1988).
[11] G. I. Ol’shanskii, ”Unitary representations of infinite-dimensional pairs (G, K) and R. Howe’s formalism,” Dokl. Akad. Nauk SSSR,269, No. 1, 33-36 (1983).
[12] G. I. Ol’shanskii, ”Unitary representations of the infinite-dimensional classical groups U(p, ?), SO0(p, ?), Sp(p, ?) and the corresponding motion groups,” Funkts. Anal. Prilozhen.,12, No. 3, 32-44 (1978). · Zbl 0392.22012
[13] G. I. Ol’shanskii, ”Infinite-dimensional classical groups of finite R-rank: a description of representation and asymptotic theory,” Funkts. Anal. Prilozhen.,18, No. 1, 28-42 (1984).
[14] G. I. Ol’shanskii, ”Unitary representations of the group SO0(?, ?) as limits of unitary representations of the group SO0(n, ?) as n ? ?,” Funkts. Anal. Prilozhen.,20, No. 4, 46-57 (1986).
[15] G. I. Ol’shanskii, ”A description of unitary representations with a leading weight for the groups U(p, q)\(\sim\),” Funkts. Anal. Prilozhen.,14, No. 3, 32-44 (1980).
[16] H. Bart, I. Gohberg, and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Birkhäuser, Basel (1979). · Zbl 0424.47001
[17] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Springer, Berlin (1972). · Zbl 0265.43008
[18] R. Howe, ”Remarks on classical invariant theory,” Yale University Preprint. · Zbl 0674.15021
[19] M. Kashiwara and M. Vergne, ”On the Sergal?Shale?Weil representations and harmonic polynomials,” Invent. Math.,44, No. 1, 1-47 (1978). · Zbl 0375.22009 · doi:10.1007/BF01389900
[20] M. Krämer, ”Some remarks suggesting an interesting theory of harmonic functions on SU(2n + 1)/Sp(n) and SO(2n + 1)/U(n),” Arch. Math.,33, No. 1, 76-79 (1979). · Zbl 0404.43006 · doi:10.1007/BF01222728
[21] G. I. Ol’shansky, ”Unitary representations of the infinite symmetric group: a semigroup approach,” in: Representations of Lie groups and Lie algebras, Akadémiai Kiado, Budapest (1985), pp. 181-197.
[22] I. E. Segal, ”The structure of a class of representations of a unitary group on a Hilbert space,” Proc. Am. Math. Soc.,88, No. 1, 197-203 (1958). · Zbl 0078.29301
[23] S. Sternberg, ”Some recent results on the metaplectic representation,” in: Lect. Notes in Physics, Vol. 79 (1978), pp. 117-144. · doi:10.1007/3-540-08848-2_7
[24] D. Voiculescu, ”Representations factorielles de type II1 de U(?),” J. Math. Pures Appl.,55, No. 1, 1-20 (1976). · Zbl 0352.22014
[25] A. H. Dooley and J. W. Rice, ”On contractions of semisimple Lie groups,” Trans. Am. Math. Soc.,289, No. 1, 185-202 (1985). · Zbl 0546.22017 · doi:10.1090/S0002-9947-1985-0779059-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.