zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time. (English) Zbl 0668.35084
The Korteweg-de Vries equation was originally derived as a model for unidirectional waves of small amplitude, occurring in a large variety of physical situations in which nonlinearity and dispersion are important and have comparable effect. In many real problems, one cannot neglect energy dissipation mechanisms and external excitation. In this paper, the equation $$ u\sb t+uu\sb x+u\sb{xxx}+\gamma u=f $$ is considered to possess space-periodic solutions in the case where the external excitation f is either time-independent or time-periodic. The paper is organized as follows. The second section deals with the construction of the universal attractor for a nonlinear group, based on time-uniform estimates that follow from the use of the first three classical polynomial multiplies. The third section contains a result on the finite dimension of the universal attractor. Finally, an Appendix is devoted to an abstract result on the evolution of Gram determinants.
Reviewer: L.Y.Shih

35Q99PDE of mathematical physics and other areas
35B40Asymptotic behavior of solutions of PDE
37C70Attractors and repellers, topological structure
Full Text: DOI
[1] L. Abdelouhab, J. Bona, M. Felland, and J. C. Saut, Nonlocal models for nonlinear dispersive waves, Phys. D, in press. · Zbl 0699.35227
[2] Ablowitz, M. J.; Segur, H.: Solitons and the inverse scattering transform. (1981) · Zbl 0472.35002
[3] Bona, J. L.; Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. trans. Roy. soc. London ser. A 278, 555-604 (1975) · Zbl 0306.35027
[4] Bourbaki, N.: Espaces vectoriels topologiques. (1981) · Zbl 0042.35302
[5] Constantin, P.; Foias, C.; Temam, R.: Attractors representing turbulent flows. Mem. amer. Math. soc. 53, No. No. 314 (1985) · Zbl 0567.35070
[6] Courant, R.; Hilbert, D.: Methods of mathematical physics. (1966) · Zbl 57.0245.01
[7] Ghidaglia, J. M.: See also CR acad. Sci. Paris sér. I math.. CR acad. Sci. Paris sér. I math. 305, 291-294 (1987)
[8] J. M. Ghidaglia, An estimate on the actual number of degrees of freedom for damped driven K-dV equations, to appear.
[9] Ghidaglia, J. M.; Temam, R.: Attractors for damped nonlinear hyperbolic equations. J. math. Pures appl. 66, 273-319 (1987) · Zbl 0572.35071
[10] J. M. Ghidaglia and R. Temam, Periodic dynamical systems with application to Sine-Gordon equations: Estimates on the fractal dimension of the universal attractor, to appear. · Zbl 0688.58027
[11] Hurewitz, W.; Wallman, H.: Dimension theory. (1941) · Zbl 67.1092.03
[12] Korteweg, D. J.; De Vries, G.: On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Phil. mag. 39, 422-443 (1895) · Zbl 26.0881.02
[13] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. (1969)
[14] Lions, J. L.; Magenes, E.: Nonhomogeneous boundary value problems and applications. (1972) · Zbl 0223.35039
[15] Mandelbrot, B.: Fractals: form, chance and dimensions. (1977) · Zbl 0376.28020
[16] Miles, J. W.: The Korteweg-de Vries equation: A historical essay. J. fluid mech. 106, 131-147 (1981) · Zbl 0468.76003
[17] Ott, E.; Sudan, R. N.: Damping of solitary waves. Phys. fluids 13, 1432-1434 (1970)
[18] Saut, J. C.: Sur quelques généralisations de l’équation de Korteweg-de Vries. J. math. Pures appl. 58, 21-61 (1979) · Zbl 0449.35083
[19] Temam, R.: Sur un problème non linéaire. J. math. Pures appl. 48, 159-172 (1969) · Zbl 0187.03902
[20] Temam, R.: Infinite dimensional dynamical systems in mechanics and physics. (1988) · Zbl 0662.35001