zbMATH — the first resource for mathematics

On the relationship between \(\gamma_ p\)-Radonifying operators and other operator ideals in Banach spaces of stable type p. (English) Zbl 0668.47017
Let E be a Banach space, p a real number with \(1<p<2\), and \((\Omega,\Sigma,\mu)\) a \(\sigma\)-finite measure space. A bounded operator T from \(L_ p(\mu)\) into E is said to be \(\gamma_ p\)-Radonifying if \(\exp (-\| T'x'\|^ p)\) is the characteristic function of a Radon measure on E. The authors study the relationship between such operators and various operator ideals. For example, the condition “E is of stable type p and isomorphic to a subspace of a quotient of some \(L_ p\) space” is equivalent to the condition “an operator T is \(\gamma_ p\)- Radonifying iff its dual \(T'\) is p-integral”.
Reviewer: E.Azoff
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46B20 Geometry and structure of normed linear spaces
47L10 Algebras of operators on Banach spaces and other topological linear spaces
46B25 Classical Banach spaces in the general theory
Full Text: DOI EuDML
[1] Chobanjan, S.A., Tarieladze, V.I.: Gaussian characterizations of certain Banach spaces. J. Multivariate. Anal.7, 183-203 (1977) · Zbl 0362.60054
[2] Kwapien, S.: On operators factorizable throughL p space. Bull. Soc. Math. Fr. Mem.31-32, 215-225 (1972)
[3] Kwapien, S., Szyma?ski, B.: Some remarks on Gaussian measures in Banach spaces. Prob. Math. Stat.1, 59-65 (1980) · Zbl 0511.60004
[4] Linde, W., Tarieladze, V.I., Chobanjan, S.A.: Characterization of certain classes of Banach spaces by properties of Gaussian measures. Theory Probab. Appl.25, 159-164 (1980) · Zbl 0456.60006
[5] Linde, W., Mandrekar, V., Weron, A.:p-stable measures andp-absolutely summing operators. Lecture Notes Math. 828, pp. 167-178. Berlin Heidelberg New York Springer 1980 · Zbl 0445.60006
[6] Linde, W.: Operators generating stable measures on Banach spaces. Z. Wahrscheinlichkeits-theorie verw. Geb.60, 171-184 (1982) · Zbl 0468.60007
[7] Linde, W.: Moments of measures on Banach spaces. Math. Ann.258, 277-287 (1982) · Zbl 0476.46043
[8] Lindenstrauss, J. Pelczy?ski, A.: Absolutely summing operators inL p -spaces and their applications. Stud. Math.29, 275-326 (1968) · Zbl 0183.40501
[9] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. Lecture Notes Math. 338. Berlin Heidelberg New York Springer 1973 · Zbl 0259.46011
[10] Mandrekar, V., Weron, A.: ?-stable characterization of Banach spaces (1<?<2). J. Multivariate Anal.11, 572-580 (1981) · Zbl 0472.60009
[11] Maurey, B.: Espaces de cotypep, 0<p?2. Sém. Maurey-Schwartz, Exp. VII 1972/73.
[12] Maurey, B.: Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espacesL p . Asterisque11 (1974)
[13] Mouchtari, D.: Sur l’existence d’une topologie de type sazonov sur une espace de Banach. Sém. Maurey-Schwartz, Exp. XVII 1975/76.
[14] Persson, A., Pietsch, A.:p-Nukleare andp-integrale Abbildungen in Banachräumen. Stud. Math.33, 19-62 (1969) · Zbl 0189.43602
[15] Persson, A.: On some properties ofp-nuclear andp-integral operators. Stud. Math.33, 213-222 (1969) · Zbl 0184.17903
[16] Pietsch, A.: Absolutp-summierende Abbildungen in normierten Räumen. Stud. Math.28, 333-353 (1967) · Zbl 0156.37903
[17] Pietsch, A.: Operator ideals. Berlin:Akademie-Verlag 1978 · Zbl 0399.47039
[18] Schwartz, L.: Geometry and probability in Banach spaces. Lecture Notes Math. 852. Berlin Heidelberg New York:Springer 1981 · Zbl 0555.46007
[19] Takahashi, Y., Okazaki, Y.: Characterizations of subspaces, quotients and subspaces of quotients ofL p Hokkaido Math. J.15, 233-241 (1986) · Zbl 0605.47019
[20] Thang, D.H., Tien, N.D.: Mappings of stable cylindrical measures in Banach spaces. Theory Probab. Appl.27, 525-535 (1982) · Zbl 0509.60005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.