zbMATH — the first resource for mathematics

Cloud computing approach for intelligent visualization of multidimensional data. (English) Zbl 1355.65021
Pardalos, Panos M. (ed.) et al., Advances in stochastic and deterministic global optimization. Cham: Springer (ISBN 978-3-319-29973-0/hbk; 978-3-319-29975-4/ebook). Springer Optimization and Its Applications 107, 73-85 (2016).
Summary: In this paper, a Cloud computing approach for intelligent visualization of multidimensional data is proposed. Intelligent visualization enables to create visualization models based on the best practices and experience. A new Cloud computing-based data mining system DAMIS is introduced for the intelligent data analysis including data visualization methods. It can assist researchers to handle large amounts of multidimensional data when executing resource-expensive and time-consuming data mining tasks by considerably reducing the information load. The application of DAMIS is illustrated by the visual analysis of medical streaming data.
For the entire collection see [Zbl 1359.90005].

65C60 Computational problems in statistics (MSC2010)
62-07 Data analysis (statistics) (MSC2010)
62H30 Classification and discrimination; cluster analysis (statistical aspects)
Full Text: DOI
[1] Bernatavičien\.e, J., Dzemyda, G., Kurasova, O., Marcinkevičius, V., Medvedev, V.: The problem of visual analysis of multidimensional medical data. In: Törn, A., Žilinskas, J. (eds.) Models and Algorithms for Global Optimization. Optimization and Its Applications, vol. 4, pp. 277–298. Springer, New York (2007). doi:10.1007/978-0-387-36721-7_17 · doi:10.1007/978-0-387-36721-7_17
[2] Bernatavičien\.e, J., Dzemyda, G., Bazilevičius, G., Medvedev, V., Marcinkevičius, V., Treigys, P.: Method for visual detection of similarities in medical streaming data. Int. J. Comput. Commun. Control 10 (1), 8–21 (2015). doi:10.15837/ijccc.2015.1.1310 · doi:10.15837/ijccc.2015.1.1310
[3] Berthold, M.R., Hand, D.J. (eds.): Intelligent Data Analysis: An Introduction, 2nd edn. Springer, Berlin (2003). doi:10.1007/ 978-3-540-48625-1 · Zbl 0988.68055 · doi:10.1007/ · doi:978-3-540-48625-1
[4] Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin (2007). doi:10.1007/ 978-3-540-78246-9_38
[5] Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005). doi:10.1007/0-387-28981-X · Zbl 1085.62079 · doi:10.1007/0-387-28981-X
[6] Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353 (2013) · Zbl 1317.68151
[7] Dzemyda, G., Kurasova, O.: Heuristic approach for minimizing the projection error in the integrated mapping. Eur. J. Oper. Res. 171 (3), 859–878 (2006). doi:10.1016/j.ejor.2004.09.011 · Zbl 1116.90117 · doi:10.1016/j.ejor.2004.09.011
[8] Dzemyda, G., Kurasova, O., Medvedev, V.: Dimension reduction and data visualization using neural networks. In: Maglogiannis, I., Karpouzis, K., Wallace, M., Soldatos, J. (eds.) Emerging Artificial Intelligence Applications in Computer Engineering. Frontiers in Artificial Intelligence and Applications, vol. 160, pp. 25–49. IOS Press, Amsterdam (2007)
[9] Dzemyda, G., Marcinkevičius, V., Medvedev, V.: Large-scale multidimensional data visualization: a web service for data mining. In: Abramowicz, W., Llorente, I., Surridge, M., Zisman, A., Vayssière, J. (eds.) Towards a Service-Based Internet. Lecture Notes in Computer Science, vol. 6994, pp. 14–25. Springer, Berlin/Heidelberg (2011). doi:10. 1007/978-3-642-24755-2_2 · Zbl 05979932 · doi:10.1007/978-3-642-24755-2_2
[10] Dzemyda, G., Marcinkevičius, V., Medvedev, V.: Web application for large-scale multidimensional data visualization. Math. Model. Anal. 16 (2), 273–285 (2011). doi:10.3846/13926292.2011.580381 · Zbl 05919547 · doi:10.3846/13926292.2011.580381
[11] Dzemyda, G., Kurasova, O., Žilinskas, J.: Multidimensional Data Visualization: Methods and Applications. Springer, Berlin (2013). doi:10. 1007/978-1-4419-0236-8 · Zbl 1337.68001
[12] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11 (1), 10–18 (2009). doi:10.1145/1656274.1656278 · Zbl 05740105 · doi:10.1145/1656274.1656278
[13] Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business Analytics Applications. Chapman and Hall/CRC, Boca Raton (2013)
[14] Jolliffe, I.: Principal Component Analysis. Springer, Berlin (1986). doi:10.1007/b98835 · Zbl 1011.62064 · doi:10.1007/b98835
[15] Kohonen, T.: Overture. In: Self-Organizing Neural Networks: Recent Advances and Applications, pp. 1–12. Springer, New York (2002) · doi:10.1007/978-3-7908-1810-9_1
[16] Kranjc, J., Podpecan, V., Lavrac, N.: Clowdflows: A cloud based scientific workflow platform. In: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 7524, pp. 816–819. Springer, Berlin/Heidelberg (2012). doi:10.1007/ 978-3-642-33486-3_54
[17] Kranjc, J., Smailovič, J., Podpečan, V., Grčar, M., Žnidaršič, M., Lavrač, N.: Active learning for sentiment analysis on data streams: methodology and workflow implementation in the ClowdFlows platform. Inf. Process. Manag. 51 (2), 187–203 (2014). doi:10.1016/j.ipm.2014.04. 001 · doi:10.1016/j.ipm.2014.04. · doi:001
[18] Kurasova, O., Molyt\.e, A.: Quality of quantization and visualization of vectors obtained by neural gas and self-organizing map. Informatica 22 (1), 115–134 (2011)
[19] Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Netw. 6 (2), 296–317 (1995). doi:10.1109/72.363467 · doi:10.1109/72.363467
[20] Massimo, B., Giuseppe, L., Castellani, M., Cavuoti, S., D’Abrusco, R., Laurino, O.: DAME: a distributed web based framework for knowledge discovery in databases. Memorie Soc. Astron. Ital. Suppl. 19, 324–329 (2012)
[21] Medvedev, V., Dzemyda, G., Kurasova, O., Marcinkevičius, V.: Efficient data projection for visual analysis of large data sets using neural networks. Informatica 22 (4), 507–520 (2011) · Zbl 1271.68204
[22] Podpečan, V., Zemenova, M., Lavrač, N.: Orange4WS environment for service-oriented data mining. Comput. J. 55, 82–98 (2012). doi:10. 1093/comjnl/bxr077
[23] Ye, N.: The Handbook of Data Mining. LEA, New Jersey/London (2003)
[24] Žilinskas, A., Žilinskas, J.: Two level minimization in multidimensional scaling. J. Glob. Optim. 38 (4), 581–596 (2007). doi:10.1007/ s10898-006-9097-x · Zbl 1145.90060 · doi:10.1007/ · doi:s10898-006-9097-x
[25] Žilinskas, A., Žilinskas, J.: A hybrid method for multidimensional scaling using city-block distances. Math. Meth. Oper. Res. 68 (3), 429–443 (2008). doi:10.1007/s00186-008-0238-5 · Zbl 1159.90023 · doi:10.1007/s00186-008-0238-5
[26] Žilinskas, A., Žilinskas, J.: Branch and bound algorithm for multidimensional scaling with city-block metric. J. Glob. Optim. 43 (2-3), 357–372 (2009). doi:10.1007/s10898-008-9306-x · Zbl 1179.90250 · doi:10.1007/s10898-008-9306-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.