×

zbMATH — the first resource for mathematics

Monocular indoor localization techniques for smartphones. (English) Zbl 1404.68180
Summary: In the last decade huge research work has been put to the indoor visual localization of personal smartphones. Considering the available sensor capabilities monocular odometry provides promising solution, even reecting requirements of augmented reality applications. This paper is aimed to give an overview of state-of-the-art results regarding monocular visual localization. For this purpose essential basics of computer vision are presented and the most promising solutions are reviewed.
MSC:
68T45 Machine vision and scene understanding
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Y. I. Abdel-Aziz, H. M. Karara, M. Hauck, Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry, Photogrammetric Engineering and Remote Sensing 81, 2 (2015) 103-107. ⇒191
[2] T. Bailey, J. Nieto, E. Nebot, Consistency of the fastslam algorithm, Proc. of IEEE International Conference on Robotics and Automation (ICRA’06), Orlando, FL, USA, 2006, pp. 424-429. ⇒209
[3] S. Baker, I. Matthews, Lucas-kanade 20 years on: A unifying framework, Inter- national Journal of Computer Vision (IJCV) 56, 3 (2004) 221-255. ⇒198
[4] S. S. Beauchemin, R. Bajcsy, Modelling and removing radial and tangential distortions in spherical lenses, Proc. of International Workshop on Theoretical Foun-dations of Computer Vision (TFCV’00), Multi-Image Analysis, Lecture Notes in Computer Science, Dagstuhl Castle, Germany, 2000, pp. 1-21. ⇒189
[5] J. Chao, A. Al-Nuaimi, G. Schroth, E. Steinbach, Performance comparison of various feature detector-descriptor combinations for content-based image retrieval with jpeg-encoded query images, Proc. of International Workshop on Multimedia Signal Processing (MMSP’13), Pula, Sardinia, Italy, 2013, pp. 29-34. ⇒190
[6] J. Civera, A. J. Davison, J. M. M. Montiel, Inverse depth parametrization for monocular slam, IEEE Transactions on Robotics 24, 5 (2008) 932-945. ⇒205, 207
[7] L. E. Clement, V. Peretroukhin, J. Lambert, J. Kelly, The battle for filter supremacy: A comparative study of the multi-state constraint kalman filter and the sliding window filter, Proc. of Conference on Computer and Robot Vision (CRV’15), Halifax, Nova Scotia, 2015, pp. 23-30. ⇒207
[8] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse, Monoslam: Real-time single camera slam, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 29, 6 (2007) 1052-1067. ⇒199
[9] H. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: part i, IEEE Robotics & Automation Magazine 13, 2 (2006) 99-110. ⇒187, 200[10] J. Engel, T. Schöps, D. Cremers, Lsd-slam: Large-scale direct monocular slam, Proc. of 13th European Conference on Computer Vision (ECCV’14), volume 2, Springer International Publishing, Zurich, Switzerland, 2014, pp. 834-849. ⇒ 197
[10] J. Engel, J. Sturm, D. Cremers, Semi-dense visual odometry for a monocular camera, Proc. of IEEE International Conference on Computer Vision (ICCV’13), Sydney, Australia, 2013, pp. 1449-1456. ⇒197
[11] M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM 24, 6 (1981) 381-395. ⇒191
[12] C. Forster, M. Pizzoli, D. Scaramuzza, Svo: Fast semi-direct monocular visual odometry, Proc. of IEEE International Conference on Robotics and Automation (ICRA’14), Hong Kong, China, 2014, pp. 15-22. ⇒198
[13] F. Fraundorfer, D. Scaramuzza, Visual odometry, part ii: Matching, robustness, optimization, and applications, IEEE Robotics & Automation Magazine 19, 2 (2012) 78-90. ⇒187
[14] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite, Proc. of Conference on Computer Vision and Pattern Recognition (CVPR’12), IEEE, Providence, RI, USA, 2012, pp. 3354-3361. ⇒ 210
[15] N. Gordon, Novel approach to nonlinear/non-gaussian bayesian state estimation, IEE Proceedings F (Radar and Signal Processing) 140 (1993) 107-113(6) ⇒205
[16] C. Harris, J. Pike, 3d positional integration from image sequences, Proc. of the Alvey Vision Conference, Manchester, UK, 1987, pp. 87-90. ⇒187
[17] C. Harris, M. Stephens, A combined corner and edge detector, Proc. of the 4th Alvey Vision Conference, Manchester, UK, 1988, pp. 147-151. ⇒190
[18] R. I. Hartley, In defense of the eight-point algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI’97) 19, 6 (1997) 580-593. ⇒191
[19] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, (2nd edition), Cambridge University Press, Cambridge, England, UK, 2004. ⇒187, 190, 191, 192 · Zbl 0956.68149
[20] C. Kerl, J. Sturm, D. Cremers, Robust odometry estimation for rgb-d cameras, Proc. of IEEE International Conference on Robotics and Automation (ICRA’13), Karlsruhe, Germany, 2013, pp. 3748-3754. ⇒195
[21] G. Klein, D. Murray, Parallel tracking and mapping for small ar workspaces, Proc. of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), Nara, Japan, 2007, pp. 225-234. ⇒187, 193
[22] G. Klein, D. Murray, Improving the agility of keyframe-based SLAM, Proc. of 10th European Conference on Computer Vision (ECCV’08), Marseille, France, 2008, pp. 802-815. ⇒193
[23] L. Kneip, D. Scaramuzza, R. Siegwart, A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation, Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), Colorado Springs, USA, 2011, pp. 2969-2976. ⇒191
[24] K. Konolige, M. Agrawal, J. Solfia, Large-scale visual odometry for rough terrain, Proc. of International Symposium on Robotics Research, Hiroshima, Japan, 2007, pp. 201-212. ⇒199
[25] V. Lepetit, F.Moreno-Noguer, P.Fua, Epnp: An accurate o(n) solution to the pnp problem, International Journal Computer Vision 81, 2 (2009) 155-166. ⇒191
[26] H. Li, R. Hartley, Five-point motion estimation made easy, Proc. of 18th Inter- national Conference on Pattern Recognition (ICPR’06), volume 1, Hong Kong, China, 2006, pp. 630-633. ⇒191
[27] M. Li, B. H. Kim, A. I. Mourikis, Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera, Proc. of IEEE International Conference on Robotics and Automation (ICRA’13), Karlsruhe, Germany, 2013, pp. 4712-4719. ⇒208
[28] M. Li, A. I. Mourikis, Optimization-based estimator design for vision-aided inertial navigation, Proc. of the Robotics: Science and Systems Conference, Sydney, NSW, Australia, 2012, pp. 504-509. ⇒209
[29] M. Li, A. I. Mourikis, 3-d motion estimation and online temporal calibration for camera-imu systems, Proc. of IEEE International Conference on Robotics and Automation (ICRA’13), Karlsruhe, Germany, 2013, pp. 5709-5716. ⇒208
[30] M. Li, A. I. Mourikis, High-precision, consistent ekf-based visual-inertial odometry, International Journal of Robotics Research 32, 6 (2013) 690-711. ⇒208
[31] M. Li, H. Yu, X. Zheng, A. I. Mourikis, High-fidelity sensor modeling and selfcalibration in vision-aided inertial navigation, Proc. of IEEE International Con- ference on Robotics and Automation (ICRA’14), Hong Kong, China, 2014, pp. 409-416. ⇒208
[32] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Publishing Company, Incorporated, 2008. ⇒204 · Zbl 1132.65003
[33] H. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature 293, 10 (1981) 133-135. ⇒187
[34] M. A. Lourakis, A. Argyros, SBA: A software package for generic sparse bundle adjustment, ACM Transactions on Mathematical Software (TOMS⇒ 36, 1 (2009) 1-30. ⇒192 · Zbl 1364.65052
[35] D. G. Lowe, Object recognition from local scale-invariant features, Proc. of IEEE International Conference on Computer Vision (ICCV’99), volume 2, Kerkyra, Greece, 1999, pp. 1150-1157. ⇒190
[36] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing 22, 10 (2004) 761-767. ⇒190
[37] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, Fastslam: A factored solution to the simultaneous localization and mapping problem, Proc. of National Con- ference on Artificial Intelligence, American Association for Artificial Intelligence (AAAI), Edmonton, Alberta, Canada, 2002, pp. 593-598. ⇒209
[38] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM 2.0: An improvedparticle filtering algorithm for simultaneous localization and mapping that provably converges, Proc. of International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, 2003, pp. 1151-1156. ⇒209
[39] R. Mur-Artal, J. M. M. Montiel, J. D. Tard_os, ORB-SLAM: a versatile and accurate monocular SLAM system, IEEE Transactions on Robotics 31, 5 (2015) 1147-1163. ⇒193
[40] R. A. Newcombe, S. J. Lovegrove, A. J. Davison, Dtam: Dense tracking and mapping in real-time, Proc. of International Conference on Computer Vision (ICCV’11), IEEE Computer Society, Washington, DC, USA, 2011, pp. 2320-2327. ⇒196
[41] D. Nist_er, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI’04) 26, 6 (2004) 756-777. ⇒191
[42] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, IEEE Computer Society, Seattle, WA, USA, 2006, pp. 2161-2168. ⇒195, 207
[43] T. Oskiper, Z. Zhu, S. Samarasekera, R. Kumar, Visual odometry system using multiple stereo cameras and inertial measurement unit, Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), Minneapolis, MN, USA, 2007, pp. 1-8. ⇒199
[44] O. Pizarro, R. Eustice, H. Singh, Relative pose estimation for instrumented, calibrated imaging platforms, Proc. of Digital Image Computing Techniques and Applications, Sydney, Australia, 2003, pp. 601-612. ⇒191
[45] S. I. Roumeliotis, A. E. Johnson, J. F. Montgomery, Augmenting inertial navigation with image-based motion estimation, Proc. of IEEE International Confer- ence on Robotics and Automation (ICRA’02), volume 4, Washington, DC, USA, 2002, pp. 4326-4333. ⇒199
[46] C. Roussillon, A. Gonzalez, J. Solfia, J.-M. Codol, N. Mansard, S. Lacroix, M. Devy, Rt-slam: A generic and real-time visual slam implementation, Proc. of International Conference of Computer Vision Systems (ICVS’11), Lecture Notes in Computer Science 6962 (2011) 31-40. ⇒207
[47] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: An efficient alternative to sift or surf, Proc. of International Conference on Computer Vision (ICCV’11), Barcelona, Spain, 2011, pp. 2564-2571. ⇒190
[48] S. Särkkä, Bayesian Filtering and Smoothing, (1st edition), Cambridge University Press, New York, NY, USA, 2013. ⇒203, 205
[49] D. Scaramuzza, F. Fraundorfer, Visual odometry, part i: The first 30 years and fundamentals, IEEE Robotics & Automation Magazine 18, 4 (2011) 80-92. ⇒ 187
[50] M. Smith, I. Baldwin, W. Churchill, R. Paul, P. Newman, The new college vision and laser data set, The International Journal of Robotics Research 28, 5 (2009) 595-599. ⇒210
[51] J. Solfia, Consistency of the monocular ekf-slam algorithm for three different landmark parametrizations, Proc. of IEEE International Conference on Robotics and Automation (ICRA’10), Anchorage, Alaska, 2010, pp. 3513-3518. ⇒205
[52] J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, A benchmark for the evaluation of rgb-d slam systems, Proc. of International Conference on Intelligent Robot Systems (IROS’12), Vilamoura, Algarve, Portugal, 2012, pp. 573-580. ⇒210
[53] J. Tardif, M. G. M. Laverne, A. Kelly, M. Laverne, A new approach to visionaided inertial navigation, Proc. of International Conference on Intelligent Robots and Systems (IROS’10), Taipei, Taiwan, 2010, pp. 4161-4168. ⇒199
[54] B. Triggs, Camera pose and calibration from 4 or 5 known 3d points, Proc. of IEEE International Conference on Computer Vision (ICCV’99), volume 1, Kerkyra, Greece, 1999, pp. 278-284. ⇒191
[55] B. Triggs, P. F. McLauchlan, R. I. Hartley, A. W. Fitzgibbon, Bundle adjustment | a modern synthesis, Proc. of International Workshop on Vision Algorithms: Theory and Practice, Springer Berlin Heidelberg, Corfu, Greece, 1999, pp. 298-372. ⇒192
[56] S. Weiss, R. Siegwart, Real-time metric state estimation for modular visioninertial systems, Proc. of IEEE International Conference on Robotics and Au- tomation (ICRA’11), Shanghai, China, 2011, pp. 4531-4537. ⇒199
[57] C. Wu, SiftGPU: A GPU implementation of scale invariant feature transform (SIFT), http://cs.unc.edu/ ccwu/siftgpu, 2007. ⇒210
[58] C.Wu, S. Agarwal, B. Curless, S. M. Seitz, Multicore bundle adjustment, Proc. of Conference on Computer Vision and Pattern Recognition (CVPR’11), Colorado Springs, USA, 2011, pp. 3057-3064. ⇒210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.