×

zbMATH — the first resource for mathematics

Some unitary representations of Thompson’s groups \(F\) and \(T\). (English) Zbl 06684911
Summary: In a “naive” attempt to create algebraic quantum field theories on the circle, we obtain a family of unitary representations of Thompson’s groups \(T\) and \(F\) for any subfactor. The Thompson group elements are the “local scale transformations” of the theory. In a simple case the coefficients of the representations are polynomial invariants of links. We show that all links arise and introduce new “oriented” subgroups of \(\overrightarrow{F} < F\) and \(\overrightarrow{T} < T\) which allow us to produce all oriented knots and links.

MSC:
20F38 Other groups related to topology or analysis
46L37 Subfactors and their classification
57M25 Knots and links in the \(3\)-sphere (MSC2010)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones indicespp .5C13/=2and .5 C17/=2, Communications in Mathematical Physics, 202 (1999), 1–63.Zbl 1014.46042 MR 1686551 · Zbl 1014.46042
[2] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, New York, 1982.Zbl 0538.60093 MR 0690578 · Zbl 0538.60093
[3] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), 42 (1996), no. 3-4, 215–256.Zbl 0880.20027 MR 1426438 · Zbl 0880.20027
[4] J. I. Cirac and F. Verstraete, Renormalization and tensor product states in spin chains and lattices, J. Phys. A, 42 (2009), no. 50, 504004, 34 pp.Zbl 1181.82010 MR 2566331 · Zbl 1181.82010
[5] A. Connes, Noncommutative geometry, Academic Press, 1994.Zbl 0818.46076 MR 1303779 · Zbl 0818.46076
[6] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, in Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), 329–358, Pergamon, Oxford, 1970.Zbl 0202.54703 MR 0258014
[7] S. Doplicher, R. Haag, and J. E. Roberts, Fields, observables and gauge transformations. II, Communications in Mathematical Physics, 15 (1969), 173–200.Zbl 0186.58205 MR 0260294 · Zbl 0186.58205
[8] D. Evans and T. Gannon, The exoticness and realisability of twisted Haagerup–Izumi modular data, Comm. Math. Phys., 307 (2011), no. 2, 463–512.Zbl 1236.46055 MR 2837122 · Zbl 1236.46055
[9] D. Evans and Y. Kawahigashi, Quantum symmetries on operator algebras, Oxford University Press, 1998.Zbl 0924.46054 MR 1642584 · Zbl 0924.46054
[10] K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras, Communications in Mathematical Physics, 125 (1989), 201–226.Zbl 0682.46051 MR 1016869 · Zbl 0682.46051
[11] J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley–Lieb algebras, Enseign. Math. (2), 44 (1998), no. 3-4, 173–218.Zbl 0964.20002 MR 1659204 · Zbl 0964.20002
[12] R. Haag, Local Quantum Physics, Springer-Verlag, Berlin-Heidelberg-New York, 1996. Zbl 0857.46057 MR 1405610 · Zbl 0857.46057
[13] R. Haag and D. Kastler, An Algebraic Approach to Quantum Field Theory, Journal of Mathematical Physics, 5 (1964), 848–861.Zbl 0139.46003 MR 0165864 p · Zbl 0139.46003
[14] U. Haagerup, Principal graphs of subfactors in the index range 4 < 3 C2, in Subfactors. Proceedings of the Taniguchi Symposium, Katata, H. Araki, et al. (eds.), 1–38, World Scientific, 1994.Zbl 0933.46058 MR 1317352 · Zbl 0933.46058
[15] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1–25.Zbl 0508.46040 MR 0696688 · Zbl 0508.46040
[16] V. F. R. Jones, Planar Algebras. I, preprint, 1999.arXiv:math/9909027
[17] V. F. R. Jones, In and around the origin of quantum groups, in Prospects in mathematical physics, 101–126, Contemp. Math., 437, Amer. Math. Soc., 2007.Zbl 1129.81046 MR 2354658 Journal of Mathematics, 137 (1989), 311–334.Zbl 0695.46029 MR 0990215 · Zbl 1129.81046
[18] V. F. R. Jones, The annular structure of subfactors, in Essays on geometry and related topics, 401–463, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001. Zbl 1019.46036 MR 1929335 · Zbl 1019.46036
[19] V. Jones, S. Morrison, and N. Snyder, The classification of subfactors of index at most 5, Bull. Amer. Math. Soc. (N.S.), 51 (2014), no. 2, 277–327.Zbl 1301.46039 MR 3166042 · Zbl 1301.46039
[20] V. Jones and S. Reznikoff, Hilbert Space representations of the annular Temperley–Lieb algebra, Pacific Math Journal, 228 (2006), 219–250.Zbl 1131.46042 MR 2274519 · Zbl 1131.46042
[21] V. Jones, A no-go theorem for the continuum limit of a periodic quantum spin chain, 2016. arXiv:1607.08769
[22] L. Kauffman, State models and the Jones polynomial, Topology, 26 (1987), 395–407. Zbl 0622.57004 MR 0899057 · Zbl 0622.57004
[23] Y. Kawahigashi, Classification of operator algebraic conformal field theories, in Advances in quantum dynamics (South Hadley, MA, 2002), 183–193, Contemp. Math., 335, Amer. Math. Soc., Providence, RI, 2003.Zbl 1053.81040 MR 2029623 · Zbl 1053.81040
[24] R. Penrose, Applications of negative dimensional tensors, in Applications of Combinatorial Mathematics, 221–244, Academic Press, 1971.Zbl 0216.43502 MR 0281657 · Zbl 0216.43502
[25] A. Pressley and G. Segal, Loop groups, Oxford University Press, 1986.Zbl 0618.22011 MR 0900587 · Zbl 0618.22011
[26] M. Sapir and G. Golan, On Jones’ subgroup of R. Thompson group F , J. Algebra, 470 (2017), 122–159.Zbl 06647032 MR 3565428
[27] H. N. V. Temperley and E. H. Lieb, Relations between the ”percolation” and ”colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ”percolation” problem, Proceedings of the Royal Society A, 322 (1971), 251–280.Zbl 0211.56703 MR 0498284 · Zbl 0211.56703
[28] V. Toledano Laredo, Positive energy representations of the loop groups of non-simply connected Lie groups, Communications in Mathematical Physics, 207 (1999), 307–339. Zbl 0969.22010 MR 1724846 · Zbl 0969.22010
[29] J. von Neumann, On infinite direct products, Compositio Mathematica, 6 (1939), 1–77. Zbl 0019.31103 MR 1557013 · JFM 64.0377.01
[30] A. Wassermann, Operator algebras and conformal field theory III: Fusion of positive energy representations of LSU.N / using bounded operators, Inventiones Mathematicae, 133(1998), 467–538.Zbl 0944.46059 MR 1645078 · Zbl 0944.46059
[31] D. Welsh, The computational complexity of knot and matroid polynomials, Discrete Mathematics, 124 (1994), 251–269.Zbl 0816.57008 MR 1258858 · Zbl 0816.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.